• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Judgment under Uncertainty: Heuristics and Biases

    Judgment under Uncertainty by Kahneman, Daniel; Slovic, Paul; Tversky, Amos;

    Heuristics and Biases

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 49.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        23 409 Ft (22 295 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 2 341 Ft off)
      • Kedvezményes ár 21 069 Ft (20 066 Ft + 5% áfa)

    23 409 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Cambridge University Press
    • Megjelenés dátuma 1982. április 30.

    • ISBN 9780521284141
    • Kötéstípus Puhakötés
    • Terjedelem544 oldal
    • Méret 228x149x28 mm
    • Súly 810 g
    • Nyelv angol
    • 0

    Kategóriák

    Rövid leírás:

    The thirty-five chapters in this book describe various judgmental heuristics and the biases they produce.

    Több

    Hosszú leírás:

    The thirty-five chapters in this book describe various judgmental heuristics and the biases they produce, not only in laboratory experiments but in important social, medical, and political situations as well. Individual chapters discuss the representativeness and availability heuristics, problems in judging covariation and control, overconfidence, multistage inference, social perception, medical diagnosis, risk perception, and methods for correcting and improving judgments under uncertainty. About half of the chapters are edited versions of classic articles; the remaining chapters are newly written for this book. Most review multiple studies or entire subareas of research and application rather than describing single experimental studies. This book will be useful to a wide range of students and researchers, as well as to decision makers seeking to gain insight into their judgments and to improve them.

    "The papers chosen for this volume are an excellent collection, generally well-written and fascinating." Journal of Economic Literature

    Több

    Tartalomjegyzék:

    Preface; Part I. Introduction: 1. Judgment under uncertainty: heuristics and biases Amos Tversky and Daniel Kahneman; Part II. Representativeness: 2. Belief in the law of small numbers Amos Tversky and Daniel Kahneman; 3. Subjective probability: a judgment of representativeness Daniel Kahneman and Amos Tversky; 4. On the psychology of presiction Daniel Kahneman and Amos Tversky; 5. Studies of representativeness Maya Bar-Hillel; 6. Judgments of and by representativeness Amos Tversky and Daniel Kahneman; Part III. Causality and Attribution: 7. Popular induction: information is not necessarily informative Richard E. Nisbett, Eugene Borgida, Rick Crandall and Harvey Reed; 8. Causal schemas in judgments under uncertainty Amos Tversky and Daniel Kahneman; 9. Shortcomings in the attribution process: on the origins and maintenance of erroneous social assessments Lee Ross and Craig A. Anderson; 10. Evidential impact of base rates Amos Tversky and Daniel Kahneman; Part IV. Availability: 11. Availability: a heuristic for judging frequency and probability Amos Tversky and Daniel Kahneman; 12. Egocentric biases in availability and attribution Michael Ross and Fiore Sicoly; 13. The availability bias in social perception and interaction Shelley E. Taylor; 14. The simulation heuristic Daniel Kahneman and Amos Tversky; Part V. Covariation and Control: 15. Informal covariation asssessment: data-based versus theory-based judgments Dennis L. Jennings, Teresa M. Amabile and Lee Ross; 16. The illusion of control Ellen J. Langer; 17. Test results are what you think they are Loren J. Chapman and Jean Chapman; 18. Probabilistic reasoning in clinical medicine: problems and opportunities David M. Eddy; 19. Learning from experience and suboptimal rules in decision making Hillel J. Einhorn; Part VI. Overconfidence: 20. Overconfidence in case-study judgments Stuart Oskamp; 21. A progress report on the training of probability assessors Marc Alpert and Howard Raiffa; 22. Calibration of probabilities: the state of the art to 1980 Sarah Lichtenstein, Baruch Fischhoff and Lawrence D. Phillips; 23. For those condemned to study the past: heuristics and biases in hindsight Baruch Fischhoff; Part VII. Multistage Evaluation: 24. Evaluation of compound probabilities in sequential choice John Cohen, E. I. Chesnick and D. Haran; 25. Conservatism in human information processing Ward Edwards; 26. The best-guess hypothesis in multistage inference Charles F. Gettys, Clinton Kelly III and Cameron R. Peterson; 27. Inferences of personal characteristics on the basis of information retrieved from one's memory Yaacov Trope; Part VIII. Corrective Procedures: 28. The robust beauty of improper linear models in decision making Robyn M. Dawes; 29. The vitality of mythical numbers Max Singer; 30. Intuitive prediction: biases and corrective procedures Daniel Kahneman and Amos Tversky; 31. Debiasing Baruch Fischhoff; 32. Improving inductive inference Richard E. Nesbett, David H. Krantz, Christopher Jepson and Geoffrey T. Fong; Part IX. Risk Perception: 33. Facts versus fears: understanding perceived risk Paul Slovic, Baruch Fischhoff and Sarah Lichtenstein; Part X. Postscript: 34. On the study of statistical intuitions Daniel Kahneman and Amos Tversky; 35. Variants of uncertainty Daniel Kahneman and Amos Tversky; References; Index.

    Több
    Mostanában megtekintett
    previous
    Judgment under Uncertainty: Heuristics and Biases

    Judgment under Uncertainty: Heuristics and Biases

    Kahneman, Daniel; Slovic, Paul; Tversky, Amos; (ed.)

    23 409 Ft

    21 069 Ft

    Judgment under Uncertainty: Heuristics and Biases

    The Impossible Gladiator

    Leonard, M. G.;

    3 817 Ft

    3 130 Ft

    20% %kedvezmény
    Judgment under Uncertainty: Heuristics and Biases

    Responsible and Resilient Design for Society, Volume 1: Proceedings of ICoRD 2025

    Chakrabarti, Amaresh; Singh, Vishal; Onkar, Prasad S.; Shahid, Mohammad

    124 254 Ft

    99 404 Ft

    Judgment under Uncertainty: Heuristics and Biases

    Advanced Practice Nursing in the Care of Older Adults

    Kennedy-Malone, Laurie; Groenke-Duffy, Evelyn

    42 042 Ft

    37 838 Ft

    Judgment under Uncertainty: Heuristics and Biases

    Routledge Handbook of Diplomacy and Statecraft

    McKercher, B.J.C.; (ed.)

    97 938 Ft

    88 145 Ft

    Judgment under Uncertainty: Heuristics and Biases

    Kunst entdecken - Sekundarstufe I - Band 3: Schulbuch

    Hahne, Robert; Schmidt, Margit; Grütjen, Jörg;

    13 790 Ft

    next