• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Intelligent Prognostics for Engineering Systems with Machine Learning Techniques

    Intelligent Prognostics for Engineering Systems with Machine Learning Techniques by Soni, Gunjan; Yadav, Om Prakash; Badhotiya, Gaurav Kumar;

    Sorozatcím: Advanced Research in Reliability and System Assurance Engineering;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 56.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        27 226 Ft (25 930 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 5 445 Ft off)
      • Kedvezményes ár 21 781 Ft (20 744 Ft + 5% áfa)

    27 226 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    The text discusses the latest data-driven, physics-based, and hybrid approaches employed in each stage of industrial prognostics and reliability estimation. It will be a useful text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering

    Több

    Hosszú leírás:

    The text discusses the latest data-driven, physics-based, and hybrid approaches employed in each stage of industrial prognostics and reliability estimation. It will be a useful text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, electrical engineering, and computer science.


    The book



    • Discusses basic as well as advance research in the field of prognostics

    • Explores integration of data collection, fault detection, degradation modeling and reliability prediction in one volume

    • Covers prognostics and health management (PHM) of engineering systems

    • Discusses latest approaches in the field of prognostics based on machine learning

    The text deals with tools and techniques used to predict/ extrapolate/ forecast the process behavior, based on current health state assessment and future operating conditions with the help of Machine learning. It will serve as a useful reference text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, manufacturing science, electrical engineering, and computer science.

    Több

    Tartalomjegyzék:

    Chapter 1: A Bibliometric Analysis of Research on Tool Condition Monitoring
    Jeetesh Sharma, M.L. Mittal, Gunjan Soni


    1.1 Introduction
    1.2 Data Collection and Research Methodology
    1.3 Bibliometric Analysis
    1.4 Conclusion


    Chapter 2: Predicting Restoration Factor for Different Maintenance Types
    Neeraj Kumar Goyal, Tapash Kumar Das, Namrata Mohanty


    2.1 Introduction
    2.2 Proposed Model
    2.3 Case Study
    2.4 Conclusion


    Chapter 3:  Measurement and Modeling of Cutting Tool Temperature during Dry Turning Operation of DSS
    P. Kumar, O.P.Yadav


    3.1. Introduction
    3.2. Materials and methods
    3.3. Results and discussion
    3.4. Empirical Modeling
    3.5. Conclusions


    Chapter 4: Leaf disease recognition: Comparative Analysis of Various Convolutional Neural Network Algorithms
    Vikas Kumar Roy, Ganpati Kumar Roy, Vasu Thakur, Nikhil Baliyan, Nupur Goyal


    4.1 Introduction
    4.2 Literature Review
    4.3 Dataset
    4.4 Methodology
    4.5 Results and discussion
    4.6 Conclusion


    Chapter 5: On the Validity of Parallel Plate Assumption for Modelling Leakage Flow past Hydraulic Piston-Cylinder Configurations
    Rishabh Gupta, Jatin Prakash, Ankur Miglani, Pavan Kumar Kankar


    5.1 Introduction
    5.2 The Leakage Flow Models
    5.3 Results and discussion
    5.4 Concluding remarks


    Chapter 6: Development of a hybrid MGWO-optimized Support vector machine approach for tool wear estimation
    N. Rajpurohit, Jeetesh Sharma, M. L. Mittal


    6.1 Introduction
    6.2 Materials and methods
    6.3 Results and discussion
    6.4 Conclusion and future work


    Chapter 7: The Energy Consumption Optimization Using Machine Learning Technique in Electrical Arc Furnaces (EAF)
    Rishabh Dwivedi, Ashutosh Mishra, Devesh Kumar, Amitkumar Patil


    7.1 Introduction:
    7.2 Literature Review
    7.3 Methodology
    7.4 Result and Discussion
    7.4.1Managerial Implications
    7.5 Conclusion Limitations and Future scope


    Chapter 8: PID based ANN control of Dynamic Systems
    A. Kharola


    8.1 Introduction
    8.2 Mathematical modeling of inverted double pendulum
    8.3 PID based ANN control of Inverted double pendulum System
    8.4 Simulation & Results Comparison
    8.5 Conclusion


    Chapter 9: Fatigue Damage Prognosis of Offshore Piping
    A. Keprate, N. Bagalkot


    9.1 Introduction
    9.2 Understanding Piping Fatigue
    9.3 Fatigue Damage Prognosis
    9.4 Case Study
    9.5 Conclusion


    Chapter 10: Minimization of Joint Angle Jerk for Industrial Manipulator based on Prognostic Behaviour
    Vaishnavi J, Bharat Singh, Ankit Vijayvargiya, Rajesh Kumar


    10.1 Introduction
    10.2 System Description
    10.3 Algorithms and Objective functions
    10.3.1 Objective Function
    10.3.2 Modified Objective Function
    10.3.3 Particle Swarm Optimization (PSO)
    10.4 Results and Discussion
    10.5 Conclusion


    Chapter 11: Estimation of bearing remaining useful life using exponential degradation model and random forest algorithm
    Pawan, Jeetesh Sharma, M. L. Mittal


    11.1 Introduction
    11.2 The proposed RUL estimate approach
    11.3 Experimental result and Discussion
    11.4 Conclusion


    Chapter 12: Machine Learning-based Predictive Maintenance for Diagnostics and Prognostics of Engineering Systems
    Ramnath Prabhu Bam, Rajesh S. Prabhu Gaonkar, Clint Pazhayidam George
    12.1 Introduction and Overview
    12.2 Diagnostics and Prognostics based on Predictive Maintenance
    12.3 Machine Learning for Predictive Maintenance
    12.4 Machine learning-based Predictive Maintenance in Engineering Systems
    12.5 Summary


     

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Intelligent Prognostics for Engineering Systems with Machine Learning Techniques

    Intelligent Prognostics for Engineering Systems with Machine Learning Techniques

    Soni, Gunjan; Yadav, Om Prakash; Badhotiya, Gaurav Kumar;(ed.)

    27 226 Ft

    21 781 Ft

    20% %kedvezmény
    Intelligent Prognostics for Engineering Systems with Machine Learning Techniques

    Handbook of Statistical Bioinformatics

    Lu, Henry Horng-Shing; Schölkopf, Bernhard; Wells, Martin T.; Zhao, Hongyu

    88 752 Ft

    71 002 Ft

    20% %kedvezmény
    Intelligent Prognostics for Engineering Systems with Machine Learning Techniques

    Fundamentals of Collection Development and Management

    Johnson, Peggy; Weber, Mary Beth;

    33 418 Ft

    26 735 Ft

    next