• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Graph Theory

    Graph Theory by Diestel, Reinhard;

    Sorozatcím: Graduate Texts in Mathematics; 173;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 44.95
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        18 643 Ft (17 755 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 1 491 Ft off)
      • Kedvezményes ár 17 151 Ft (16 335 Ft + 5% áfa)

    18 643 Ft

    Beszerezhetőség

    Bizonytalan a beszerezhetőség. Érdemes még egyszer keresni szerzővel és címmel. Ha nem talál másik, kapható kiadást, forduljon ügyfélszolgálatunkhoz!

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 3rd ed.
    • Kiadó Springer
    • Megjelenés dátuma 2006. január 11.
    • Kötetek száma Book

    • ISBN 9783540261834
    • Kötéstípus Puhakötés
    • Terjedelem415 oldal
    • Méret 235x155 mm
    • Súly 655 g
    • Nyelv angol
    • Illusztrációk 146 Illustrations, black & white
    • 0

    Kategóriák

    Rövid leírás:

    The third edition of this standard textbook of modern graph theory has been carefully revised, updated, and substantially extended. Covering all its major recent developments, Graph Theory can be used both as a reliable textbook for an introductory course and as a graduate text: on each topic it covers all the basic material in full detail, and adds one or two deeper results (again with detailed proofs) to illustrate the more advanced methods of that field.

    Több

    Hosszú leírás:

    The third edition of this standard textbook of modern graph theory has been carefully revised, updated, and substantially extended. Covering all its major recent developments, Graph Theory can be used both as a reliable textbook for an introductory course and as a graduate text: on each topic it covers all the basic material in full detail, and adds one or two deeper results (again with detailed proofs) to illustrate the more advanced methods of that field.

    Graph Theory is a very well-written book, now in its third edition and the recipient of the according evolutionary benefits. It succeeds dramatically in its aims, which Diestel gives as "[providing] a reliable first introduction to graph theory that can be used for personal study or as a course text, [and] a graduate text that offers some depth in selected areas." ... Even the pictures and drawings are nice. This is a hell of a good book!

    MAA, Reviews

    Több

    Tartalomjegyzék:

    Preface

    1: The Basics
    1.1 Graphs*
    1.2 The degree of a vertex*
    1.3 Paths and cycles*
    1.4 Connectivity*
    1.5 Trees and forests*
    1.6 Bipartite graphs*
    1 7 Contraction and minors*
    1.8 Euler tours*
    1.9 Some linear algebra
    1.10 Other notions of graphs
    Exercises
    Notes

    2: Matching, Covering and Packing
    2.1 Matching in bipartite graphs*
    2.2 Matching in general graphs(*)
    2.3 Packing and covering
    2.4 Tree-packing and arboricity
    2.5 Path covers
    Exercises
    Notes

    3: Connectivity
    3.1 2-Connected graphs and subgraphs*
    3.2 The structure of 3-connected graphs(*)
    3.3 Menger?s theorem*
    3.4 Mader?s theorem
    3.5 Linking pairs of vertices(*)
    Exercises
    Notes


    4: Planar Graphs
    4.1 Topological prerequisites*
    4.2 Plane graphs*
    4.3 Drawings
    4.4 Planar graphs: Kuratowski?s theorem*
    4.5 Algebraic planarity criteria
    4.6 Plane duality
    Exercises
    Notes


    5: Colouring
    5.1 Colouring maps and planar graphs*
    5.2 Colouring vertices*
    5.3 Colouring edges*
    5.4 List colouring
    5.5 Perfect graphs
    Exercises
    Notes


    6: Flows
    6.1 Circulations(*)
    6.2 Flows in networks*
    6.3 Group-valued flows
    6.4 k-Flows for small k
    6.5 Flow-colouring duality
    6.6 Tutte?s flow conjectures
    Exercises
    Notes


    7: Extremal Graph Theory
    7.1 Subgraphs*
    7.2 Minors(*)
    7.3 Hadwiger?s conjecture*
    7.4 Szemerédi?s regularity lemma
    7.5 Applying the regularity lemma
    Exercises
    Notes

    8: Infinite Graphs
    8.1 Basic notions, facts and techniques*
    8.2 Paths, trees, and ends(*)
    8.3 Homogeneous and universal graphs*
    8.4 Connectivity and matching
    8.5 The topological end space
    Exercises
    Notes

    9: Ramsey Theory for Graphs
    9.1 Ramsey?s original theorems*
    9.2 Ramsey numbers(*)
    9.3 Induced Ramsey theorems
    9.4 Ramsey properties and connectivity(*)
    Exercises
    Notes

    10: Hamilton Cycles
    10.1 Simple sufficient conditions*
    10.2 Hamilton cycles and degree sequences*
    10.3 Hamilton cycles in the square of a graph
    Exercises
    Notes

    11: Random Graphs
    11.1 The notion of a random graph*
    11.2 The probabilistic method*
    11.3 Properties of almost all graphs*
    1 1.4 Threshold functions and second moments
    Exercises
    Notes


    12: Minors, Trees and WQO
    12.1 Well-quasi-ordering*
    12.2 The graph minor theorem for trees*
    12.3 Tree-decompositions
    12.4 Tree-width and forbidden minors
    12.5 The graph minor theorem(*)
    Exercises
    Notes

    A. Infinite sets

    B. Surfaces


    Hints for all the exercises
    Index
    Symbol index



    * Sections marked by an asterisk are recommended for a first course. Of sections marked (*), the beginning is recommended for a first course.

    Több