Face Recognition & Principal Component Analysis Method
Algorithm, Simulation & Discussion
-
5% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 39.90
-
16 548 Ft (15 760 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 5% (cc. 827 Ft off)
- Kedvezményes ár 15 721 Ft (14 972 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
16 548 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó LAP Lambert Academic Publishing
- Megjelenés dátuma 2013. január 1.
- ISBN 9783659461453
- Kötéstípus Puhakötés
- Terjedelem80 oldal
- Méret 220x150 mm
- Nyelv angol 0
Kategóriák
Hosszú leírás:
This book mainly addresses the building of face recognition system and Principal Component Analysis (PCA) method in details. PCA is a statistical approach used for reducing the number of variables in face recognition. In PCA, every image in the training set is represented as a linear combination of weighted eigenvectors called eigenfaces. These eigenvectors are obtained from covariance matrix of a training image set called as basis function. The weights are found out after selecting a set of most relevant Eigenfaces. Recognition is performed by projecting a test image onto the subspace spanned by the eigenfaces and then classification is done by measuring Euclidean distance. A number of experiments were done to evaluate the performance of the face recognition system. Here, I used a training database of students of ETE-07 series, RUET, Rajshahi-6204, Bangladesh.
Több
Innovative Strategies and Approaches for End-User Computing Advancements
78 387 Ft
72 117 Ft