Applied Statistics with Python
Two-Volume Set
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 155.00
-
74 051 Ft (70 525 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 14 810 Ft off)
- Kedvezményes ár 59 241 Ft (56 420 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
74 051 Ft
Beszerezhetőség
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1
- Kiadó Chapman and Hall
- Megjelenés dátuma 2025. december 26.
- ISBN 9781041191704
- Kötéstípus Keménykötés
- Terjedelem656 oldal
- Méret 234x156 mm
- Nyelv angol 700
Kategóriák
Rövid leírás:
The set focuses on applied and computational statistics, ANOVA, multivariate models like multiple regression, model selection, reduction techniques, regularization methods like lasso, ridge, logistic regression, K-nearest neighbors, support vector classifiers, nonlinear models, tree-based methods, clustering and principal component analysis.
TöbbHosszú leírás:
Based on Dr. Leon Kaganovskiy’s 15 years of experience teaching statistics courses at Touro University and Brooklyn College, Applied Statistics with Python, Two-Volume Set focuses on applied and computational aspects of statistics, ANOVA, multivariate models such as multiple regression, model selection, and reduction techniques, regularization methods like lasso and ridge, logistic regression, K-nearest neighbors (KNN), support vector classifiers, nonlinear models, tree-based methods, clustering, and principal component analysis.
Python programming language is used throughout due to its flexibility and widespread adoption in data science and machine learning and the books heavily rely on tools from the standard sklearn package, which are integrated directly into the discussion. Unlike many other resources, Python is not treated as an add-on, but as an organic part of the learning process.
Applied Statistics with Python has been expanded from eight chapters to thirteen chapters in two volumes, and is intended for undergraduate students in business, economics, biology, social sciences, and natural science, while also being useful as a supplementary text for more advanced students and professionals. While some familiarity with basic statistics is helpful, it is not required—core concepts are introduced and explained along the way, making the material accessible to a wide range of learners.
Key Features:
- Covers both introductory topics such as descriptive statistics, probability, probability distributions, proportion and means hypothesis testing, one-variable regression, as well as advanced machine-learning topics
- Employs Python as an organic part of the learning process
- Removes the tedium of hand/calculator computations
- Weaves code into the text at every step in a clear and accessible way
- Uses tools from Standardized sklearn Python package
Tartalomjegyzék:
VOLUME ONE: INTRODUCTORY STATISTICS AND REGRESSION
Preface 1. Introduction 2. Descriptive Data Analysis 3. Probability 4. Probability Distributions 5. Inferential Statistics and Tests for Proportions 6. Goodness of Fit and Contingency Tables 7. Inference for Means 8. Correlation and Regression
VOLUME TWO: MULTIVARIATE MODELS
Preface 1 Analysis of Variance (ANOVA) 2 Multivariate Data Models 3 Nonlinear Models 4 Tree-Based Methods 5 Unsupervised Models (Principal Values and Clusters) Bibliography Index
Több