Applied Statistics with Python
Volume II: Multivariate Models
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 89.99
-
42 992 Ft (40 945 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 8 598 Ft off)
- Kedvezményes ár 34 394 Ft (32 756 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
42 992 Ft
Beszerezhetőség
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1
- Kiadó Chapman and Hall
- Megjelenés dátuma 2025. december 29.
- ISBN 9781041006251
- Kötéstípus Keménykötés
- Terjedelem310 oldal
- Méret 234x156 mm
- Nyelv angol
- Illusztrációk 175 Illustrations, color; 175 Line drawings, color; 9 Tables, black & white 700
Kategóriák
Rövid leírás:
This book focuses on ANOVA, multivariate models such as multiple regression, model selection, and reduction techniques, regularization methods like lasso and ridge, logistic regression, K-nearest neighbors (KNN), support vector classifiers, nonlinear models, tree-based methods,clustering, and principal component analysis.
TöbbHosszú leírás:
Applied Statistics with Python, Volume II focuses on ANOVA, multivariate models such as multiple regression, model selection, and reduction techniques, regularization methods like lasso and ridge, logistic regression, K-nearest neighbors (KNN), support vector classifiers, nonlinear models, tree-based methods, clustering, and principal component analysis.
As in Volume I, the Python programming language is used throughout due to its flexibility
and widespread adoption in data science and machine learning. The book relies heavily on
tools from the standard sklearn package, which are integrated directly into the discussion.
Unlike many other resources, Python is not treated as an add-on, but as an organic part of the
learning process.
This book is based on the author’s 15 years of experience teaching statistics and is designed
for undergraduate and first-year graduate students in fields such as business, economics,
biology, social sciences, and natural sciences. However, more advanced students and
professionals might also find it valuable. While some familiarity with basic statistics is helpful, it is not required—core concepts are introduced and explained along the way, making the material accessible to a wide range of learners.
Key Features:
· Employs Python as an organic part of the learning process
· Removes the tedium of hand/calculator computations
· Weaves code into the text at every step in a clear and accessible way
· Covers advanced machine-learning topics
· Uses tools from Standardized sklearn Python package
Több
Tartalomjegyzék:
Preface 1 Analysis of Variance (ANOVA) 2 Multivariate Data Models 3 Nonlinear Models 4 Tree-Based Methods 5 Unsupervised Models (Principal Values and Clusters) Bibliography Index
Több