• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models

    Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models by Lions, Pierre-Louis;

    Sorozatcím: Oxford Lecture Series in Mathematics and Its Applications; 3;

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 177.50
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        84 800 Ft (80 762 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 8 480 Ft off)
      • Kedvezményes ár 76 320 Ft (72 686 Ft + 5% áfa)

    84 800 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma és címe :Volume 1: Incompressible Models
    • Kiadó OUP Oxford
    • Megjelenés dátuma 1996. június 27.

    • ISBN 9780198514879
    • Kötéstípus Keménykötés
    • Terjedelem252 oldal
    • Méret 241x162x19 mm
    • Súly 517 g
    • Nyelv angol
    • 0

    Kategóriák

    Rövid leírás:

    One of the most challenging topics in applied mathematics over the past decades has been the development of the theory of nonlinear partial differential equations. Many of the problems in mechanics, geometry, probability, etc. lead to such equations when formulated in mathematical terms. However despite a long history of contributions, there exists no central core theory, and the most important advances have come from the study of particular equations and classes of equations arising in specific applications.
    This two volume work forms a unique and rigorous treatise on various mathematical aspects of fluid mechanics models. These models consist of systems of nonlinear partial differential equations like the incompressible and compressible Navier-Stokes equations. The main emphasis in Volume 1 is on the mathematical analysis of incompressible models. After recalling the fundamental description of Newtonian fluids, an original and self-contained study of both the classical Navier-Stokes equations (including the inhomogeneous case) and the Euler equations is given. Known results and many new results about the existence and regularity of solutions are presented with complete proofs. The discussion contains many interesting insights and remarks. The text highlights in particular the use of modern analytical tools and methods and also indicates many open problems. Volume 2 will be devoted to essentially new results for compressible models.
    Written by one of the world's leading researchers in nonlinear partial differential equations, Mathematical Topics in Fluid Mechanics will be an indispensable reference for every serious researcher in the field. Its topicality and the clear, concise and deep presentation by the author make it an outstanding contribution to the great theoretical problems in science concerning rigorous mathematical modelling of physical phenomena.

    Több

    Hosszú leírás:

    One of the most challenging topics in applied mathematics over the past decades has been the developent of the theory of nonlinear partial differential equations. Many of the problems in mechanics, geometry, probability, etc lead to such equations when formulated in mathematical terms. However, despite a long history of contributions, there exists no central core theory, and the most important advances have come from the study of particular equations and classes of equations arising in specific applications. This two volume work forms a unique and rigorous treatise on various mathematical aspects of fluid mechanics models. These models consist of systems of nonlinear partial differential equations like the incompressible and compressible Navier-Stokes equations. The main emphasis in Volume 1 is on the mathematical analysis of incompressible models. After recalling the fundamental description of Newtonian fluids, an original and self-contained study of both the classical Navier-Stokes equations (including the inhomogenous case) and the Euler equations is given. Known results and many new results about the existence and regularity of solutions are presented with complete proofs. The discussion contiatns many interesting insights and remarks. The text highlights in particular the use of modern analytical tools and methods and also indicates many open problems. Volume 2 will be devoted to essentially new results for compressible models. Written by one of the world's leading researchers in nonlinear partial differential equations, Mathematical Topics in Fluid Mechanics will be an indispensable reference for every serious researcher in the field. Its topicality and the clear, concise, and deep presentation by the author make it an outstanding contribution to the great theoretical problems in science concerning rigorous mathematical modelling of physical phenomena. Pierre-Louis Lions is Professor of Mathematics at the University of Paris-Dauphine and of Applied Mathematics at the Ecole Polytechnique.

    A lot of results are new, and for each of these recent results the complete and self-contained proofs are given..............Summarizing the impression of this interesting book, it is worth pointing out that it is written in an easy-reading fashion along with the deep and comprehensive analysis of the topics which are at the highest level of the importance in the modern theory of nonlinear differential equations

    Több

    Tartalomjegyzék:

    Preface
    Table of contents
    Presentation of the models
    Part 1: Incompressible Models
    Density-dependent Navier-Stokes equations
    Navier-Stokes equations
    Euler equations and other incompressible models
    Appendix A Truncation of divergence-free vectorfields
    Appendix B Two facts on D1,2(R2)
    Appendix C Compactness in time with values in weak topologies
    Appendix D Weak L1 estimates for solutions of the heat equation
    Appendix E A short proof of the existence of renormalized solutions for parabolic equations
    Intended Table of Contents of Volume 2
    Part 2: Compressible Models
    Compactness results for compressible isentropic Navier-Stokes
    Stationary problems
    Existence results
    Related questions
    Part 3: Asymptotic limites
    Asymptotic limits

    Több
    0