• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Data Warehousing

    Data Warehousing by Thareja, Reema;

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 29.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        14 327 Ft (13 645 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 1 433 Ft off)
      • Kedvezményes ár 12 895 Ft (12 281 Ft + 5% áfa)

    14 327 Ft

    db

    Beszerezhetőség

    Csak rendelésre kapható a kiadónál, kissé időigényes.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó OUP India
    • Megjelenés dátuma 2009. szeptember 17.

    • ISBN 9780195699616
    • Kötéstípus Puhakötés
    • Terjedelem456 oldal
    • Méret 243x185x24 mm
    • Súly 713 g
    • Nyelv angol
    • Illusztrációk 160 line drawings
    • 0

    Kategóriák

    Rövid leírás:

    Data Warehousing is designed to serve as a textbook for students of Computer Science & Engineering (BE/Btech), computer applications (BCA/MCA) and computer science (B.Sc) for an introductory course on Data Warehousing.

    Több

    Hosszú leírás:

    Data Warehousing is designed to serve as a textbook for students of Computer Science & Engineering (BE/Btech), computer applications (BCA/MCA) and computer science (B.Sc) for an introductory course on Data Warehousing. It provides a thorough understanding of the fundamentals of Data Warehousing and aims to impart a sound knowledge to users for creating and managing a Data Warehouse.

    The book introduces the various features and architecture of a Data Warehouse followed by a detailed study of the Business Requirements and Dimensional Modelling. It goes on to discuss the components of a Data Warehouse and thereby leads up to the core area of the subject by providing a thorough understanding of the building and maintenance of a Data Warehouse. This is then followed up by an overview of planning and project management, testing and growth and then finishing with Data Warehouse solutions and the latest trends in this field. The book is finally rounded off with a broad overview of its related field of study, Data Mining.

    The text is ably supported by plenty of examples to illustrate cocepts and contains several review questions and other end-chapter exercises to test the understanding of students. The book also carries a running case study that aims to bring out the practical aspects of the subject. This will be useful for students to master the basics and apply them to real-life scenario.

    Több

    Tartalomjegyzék:

    The Compelling Need for Data Warehousing
    Learning Objective
    Case Study
    1.1 A Short Historical Note
    1.2 Need for Data Warehousing
    1.2.1 Increasing Demand for Strategic Information
    1.2.2 The Information Crisis
    1.2.3 Inability of Past Decision Support System
    1.2.4 Presence of Better Technology
    1.2.5 Expectations from the New Kind of Decision Support System
    1.2.6 Operational Vs Decisional Support System
    1.3 Data Warehouse Defined
    1.3.1 What can a Data Warehouse Do?
    1.3.2 What Data Warehouse cannot do?
    1.3.3 What is a Data Warehouse- an Environment or a Product?
    1.3.4 A Blend of Many Technologies
    1.4 Data Warehouse Users
    1.4.1 Why do they want Information?
    1.5 Benefits of Data Warehousing
    1.5.1 Tangible Benefits
    1.6 Concerns in Data Warehousing
    1.6.1 Nothing is for free
    Summary
    Review Questions
    Data Warehouse: Defining Features
    Learning Objectives
    Case Study
    2.1 Introduction
    2.2 Features of a Data Warehouse
    2.2.1 Subject Oriented Data
    2.2.2 Integrated Data
    2.2.2.1 Data Cleansing
    2.2.2.2 Data Transformation
    2.2.2.3 Non-Volatile Data
    2.2.2.4 Time Variant Data
    2.3 Data Granularity
    2.3.1 Benefits of Data Granularity
    2.3.2 Data granularity - Pros and Cons
    2.3.3 Dual Levels of Data Granularity
    2.4 The Information Flow Mechanism
    2.5 Metadata
    2.5.1 Role of Metadata
    2.5.2 Classification of Metadata
    2.5.3 Metadata is the Nerve Centre of the Data Warehouse
    2.5.4 Metadata Management
    2.6 Two Classes of Data
    2.7 Life Cycle of Data
    2.7.1 What is Data Velocity?
    2.7.2 Moving Data from One Medium to Another
    2.7.3 Inverted Data Warehouse
    2.8 Can Data Move from Data Warehouse to the Operational Systems?
    2.8.1 Direct Access Mode
    2.8.2 Indirect Access Mode
    Summary
    Review Questions
    Physical Architecture of a Data Warehouse and Data Mart Issues
    Learning Objectives
    Case Study
    3.1 Introduction
    3.2 Distinguishing Characteristics of Data Warehouse Architecture
    3.3 Data Warehouse Architectural Goals
    3.4 Data Warehouse Architecture
    3.4.1 Pros and Cons of Data Warehouse Architecture
    3.4.2 The Two Tier Architecture
    3.4.3 The Three Tier Architecture
    3.4.4 The Four Tier Architecture
    3.4.5 Three Tier Versus Two Tier Architecture
    3.4.6 Architecture Considerations and Challenges
    3.4.7 Interfacing
    3.5 Data Warehouse and Data Marts
    3.6 Issues in Building Data Marts
    3.6.1 A Change of Approaches
    3.6.2 How Are Data Warehouse Different From Data Marts
    3.6.3 Reasons for Creating Data Marts
    3.6.4 Advantages of Building a Data Mart
    3.6.5 Limitations of Building a Data Mart
    3.7 Building Data Marts
    3.8 Other Data Mart Issues
    3.8.1 Types of Data Marts Based on Underlying DBMS
    3.8.2 Loading of Data Marts
    3.8.2.1 The Types of Data Marts to Load
    3.8.2.2 Loading Temporal Data Marts
    3.8.2.3 Loading of Non- Temporal Data Marts
    3.8.3 Metadata for a Data Mart
    3.8.4 Maintenance of a Data mart
    3.8.5 Nature of data in a Data Mart
    3.8.6 Software Components of a Data Mart
    3.8.7 Performance Issues
    3.8.8 Monitoring Requirements for a Data Mart
    3.8.9 Security In A Data Mart
    3.8.10 Structure of a Data Mart
    3.9 Reasons for Increased Popularity of Data Marts
    3.10 Can We Have the Data Warehouse and Data Marts on the Same Processor?
    3.11 Pushing and Pulling Data
    Summary
    Review Questions
    Gathering the Business Requirements
    Learning Objective
    Case Study
    4.1 Introduction
    4.2 Determining the End User Requirements
    4.2.1 Business Objectives
    4.2.2 Business Queries
    4.2.3 Determining the Functional Requirements
    4.2.4 Information Infrastructure Environment
    4.2.5 The Data Quality Levels
    4.3 Requirements Gathering Methods
    4.3.1 Interviews
    4.3.2 JAD Methodology
    4.3.3 Review of Existing Documentation
    4.3.4 Brainstorming
    4.3.5 Questionnaires
    4.3.6 Where to Stop?
    4.4 Requirements Analysis
    4.4.1 Requirements Definition Document
    4.5 Gathering Requirements for a Data Warehouse Project
    4.6 Dimensional Analysis
    4.6.1 Business Dimensions
    4.6.2 Dimension Hierarchies/Categories
    4.6.3 Facts or Metrics
    4.6.4 Example
    4.7 Information Package Diagram
    4.7.1 What Information does an IPD contain?
    4.7.2 Example
    4.7.3 Reason for Forming IPD
    Summary
    Review questions
    Planning and Project Management In A Data Warehouse
    Learning Objective
    Case Study
    5.1 The Project Management Principles
    5.1.1 Key Considerations
    5.1.2 The Ideal Approach
    5.2 Data Warehouse Readiness Assessment
    5.2.1 Bad Performance Indicators
    5.2.2 Indications for a Successful Data Warehouse Project
    5.3 The Data Warehouse Project Team
    5.3.1 Key Roles
    5.3.2 User Involvement
    5.4 Planning for the Data Warehouse
    5.4.1 Gathering the Business Requirements
    5.4.2 Gaining Support for the Project
    5.5 The Data Warehouse Project Plan
    5.6 Economic Feasibility Analysis
    5.6.1 Costs and Benefits of the System
    5.6.2 Economic Feasibility Measures
    5.6.3 Justifying the New System
    5.7 Planning For a Data Warehouse Server
    5.7.1 SMP
    5.7.2 Clusters
    5.7.3 MMP
    5.7.4 ccNUMA
    5.8 Capacity Planning
    5.8.1 Estimating the Load
    5.8.2 Estimating the CPU Bandwidth
    5.8.3 Estimating the Memory
    5.8.4 Estimating the Disk
    5.9 Selecting the Operating System for the Data Warehouse
    5.10 Selecting the Database Software
    5.10.1 Difference between General DBMS and Data Warehouse DBMS
    5.10.2 How to Choose?
    5.11 Selection of Tools
    5.11.1 Information Delivery Tools
    5.11.1.1 The Tool Selection Technique
    5.11.1.2 Criteria for Selecting the Information Delivery Tool
    5.11.2 Query Tools
    5.11.3 Browser Tools
    5.11.4 Metadata Tools
    5.15.5 Data Quality Tools
    Summary
    Review Questions
    Data Warehouse Schema
    6.1 Introduction
    6.2 Building the Fact Tables and Dimension Tables
    6.2.1 The Traditional Approach
    6.3 Dimensional Modeling
    6.3.1 Data Warehouse Modeling Vs Operational Database Modeling
    6.3.2 Dimensional Model Vs ER Model
    6.3.3 The Need for Dimension Model
    6.3.4 Features of a Good Dimensional Model
    6.4 The Star Schema
    6.4.1 How Does a Query Execute?
    6.4.2 Example
    6.4.3 Pros and Cons of the Star Schema
    6.5 The Snowflake Schema
    6.5.1 The Technique
    6.5.2 Example
    6.5.3 Is Snowflaking Really Helpful?
    6.5.4 Pros and Cons of the Snowflake Schema
    6.6 Aggregate Tables
    6.6.1 Need for Building Aggregate Fact Tables
    6.6.2 Limitations of Aggregate Tables
    6.7 Fact Constellation Schema or Families of Star
    6.7.1 Pre-requisite for a Fact Constellation Schema
    6.7.2 Pros and Cons of Fact Constellation Schema
    6.8 Strengths of Dimensional Modeling
    6.9 Data Warehouse and the Data Model
    Summary
    Review Questions
    Fact Tables and Dimension Tables: Miscellaneous Issues
    Learning Objective
    Case Study
    7.1 Characteristics of a Dimension Table
    7.2 Characteristics of a Fact Table
    7.3 The Factless Fact Table
    7.4 Updates To Dimension Tables
    7.4.1 Slowly Changing Dimensions
    7.4.1.1 Type 1 Changes
    7.4.1.2 Type 2 Changes
    7.4.1.3 Type 3 Changes
    7.4.1.4 Example
    7.5 Cyclicity of Data - Wrinkle of Time
    7.6 Other Types of Dimension Tables
    7.6.1 Large Dimension Tables
    7.6.2 Rapidly Changing or Large Slowly Changing Dimensions
    7.6.3 Junk Dimensions
    7.7 Keys in the Data Warehouse Schema
    7.7.1 Primary Keys
    7.7.2 Surrogate Keys
    7.7.3 Foreign Keys
    7.8 Enhancing the Data Warehouse Performance
    7.8.1 Table Compression
    7.8.2 Parallel Execution
    7.8.3 Table Partitioning
    7.8.3.1 The Partitioning Technique
    7.8.3.2 Advantages of Partitioning
    7.8.4 Data Clustering
    7.8.5 Data Summarization
    7.8.6 Bypassing the Referential Integrity Checks
    7.8.7 Indexing the Data Warehouse
    7.9 Data Warehousing and the Technology
    Summary
    Review Questions
    THE ETL PROCESS
    Learning Objective
    Case Study
    8.1 Introduction
    8.1.1 Challenges in ETL Functions
    8.2 Data Extraction
    8.2.1 Identification of Data Sources
    8.2.2 Extracting Data for Data Warehouse Refreshing
    8.2.2.1 Immediate Data Extraction Technique
    8.2.2.2 Deferred Data Extraction Technique
    8.2.2.3 Evaluation of Extraction Techniques
    8.2.3 Managing Reference Tables in a Data Warehouse
    8.3 Data Transformation
    8.3.1 Tasks Involved in Data Transformation
    8.3.2 Role of Data Transformation Process
    8.4 Data Loading
    8.4.1 Techniques of Data Loading
    8.4.2 When should we go for Data Update rather than Data Refresh?
    8.4.3 Loading the Fact Tables and Dimension Tables
    8.5 Data Quality
    8.5.1 The Need for Data Quality
    8.5.2 Categories of Errors Which Effect data Quality
    8.5.2.1 Incomplete Errors
    8.5.2.2 Incorrect Errors
    8.5.2.3 Incomprehensibility Errors
    8.5.2.4 Inconsistency Errors
    8.5.3 Issues in Data Cleansing
    8.5.4 Conclusion about Data Quality
    Summary
    Review Questions
    Testing, Growth and Maintenance Of Data Warehouse
    Learning Objective
    Case Study
    9.1 Data Warehouse Design Review
    9.1.1 Contents of a Typical Design Review
    9.2 Developing the Data Warehouse Iteratively
    9.3 Testing
    9.3.1 Testing the Data Warehouse
    9.3.2 Developing the Test Plan
    9.3.3 Testing the Backup and Recovery Processes
    9.3.4 Testing the Data Warehouse Environment
    9.3.5 Testing the Database
    9.3.6 Logging of Test Results
    9.4 Monitoring the Data Warehouse
    9.4.1 Why Are Statistics Monitored?
    9.5 Tuning the Data Warehouse
    9.5.1 Tuning the Data Load
    9.5.2 Tuning Queries
    9.6 The Feedback Loop
    Summary
    Review Questions
    OLAP in the Data Warehouse
    Learning Objective
    Case Study
    10.1 Need for Online Analytical Processing
    10.1.1 Multi Dimensional Analysis
    10.1.2 Fast Access and Powerful Calculations
    10.2 OLAP
    10.2.1 OLAP Defined
    10.2.2 OLAP is a Data Warehouse Tool
    10.3 OLAP and Multidimensional Analysis
    10.3.1 The Multi-Dimensional Logical Data Model
    10.3.2 Multi Dimensional Model's Users
    10.3.3 The Multi Dimensional Structure
    10.3.4 Multi- Dimensional Operations
    10.3.5 The Business Need
    10.4 OLAP Functions
    10.4.1 Dimensional Analysis
    10.4.2 Hypercubes
    10.4.3 OLAP Operations in Multidimensional Data Model
    10.5 OLAP Applications
    10.5.1 Integrating OLAP with GIS
    10.6 OLAP Models
    10.6.1 MOLAP
    10.6.2 ROLAP
    10.6.3 HOLAP
    10.6.4 DOLAP
    10.6.5 OLAP Survey
    10.6.6 OLAP Trends
    10.7 OLAP Design Considerations
    10.8 OLAP Tools and Products
    10.8.1 Report Scheduling and Sharing
    10.8.2 Ad hoc Reporting
    10.8.3 OLAP Customization
    10.8.4 The Human Angle
    10.9 Existing OLAP Tools
    10.9.1 Spreadsheet OLAP Clients
    10.9.2 Other OLAP Clients
    10.9.3 Embedded OLAP
    10.10 Data Design
    10.10 Administration and Performance
    10.11 OLAP Platforms
    Summary
    Review Questions
    Overview of Building and Maintaining A Data Warehouse
    Learning Objective
    Case Study
    11.1 Problem Definition
    11.2 Critical Success Factors
    11.3 Requirement Analysis
    11.4 Planning for the Data Warehouse
    11.4.1 Project Staff
    11.4.2 Project Plan
    11.4.3 Outsourcing Vs Custom Planning
    11.4.4 Detailed Project Plan
    11.5 Data Warehouse Design Stage
    11.5.1 Design the Dimensional Model
    11.5.2 Develop the Architecture
    11.5.3 Design for Update and Expansion
    11.5.4 Design the Relational Database and OLAP Cubes
    11.5.5 Decisions in Design
    11.5.6 Detail Design
    11.5.7 Other Design Considerations
    11.6 Building and Implementing Data Marts
    11.7 Building Data Warehouse
    11.7.1 Test and Deploy the System
    11.7.2 Transition to Production
    11.7.3 User Training and Support
    11.7.3.1 The Success Factors of a Training Program
    11.7.3.2 Issues in User Support
    11.8 Backup and Recovery
    11.9 Establish the Data Quality Framework
    11.9.1 Data Purification Process
    11.10 Security Issues in a Data Warehouse
    11.11 Operating the Data Warehouse
    11.11.1 Day-to-Day Operations of the Data Warehouse
    11.11.2 Administering the Data Warehouse
    11.11.3 Overnight Processing
    11.12 Recipe for a Successful Data Warehouse
    11.13 Data Warehouse Pitfalls
    Summary
    Review Questions
    Data Mining Basics
    Learning Objective
    Case Study
    12.1 Introduction
    12.1.1 What Is Data Mining
    12.1.2 Foundation of Data Mining
    12.1.3 An Analogy
    12.1.4 What Can Be Discovered
    12.1.5 What Type of Data Can Be Mined
    12.2 Architecture of Data Mining System
    12.3 The KDD Process
    12.4 Integrating Data Mining and the Data Warehouse
    12.4.1 KDD versus Data Mining
    12.4.2 DBMS versus Data Mining
    12.4.3 OLAP versus Data Mining
    12.5 Related Areas of Data Mining
    12.6 Data Mining Techniques
    12.6.1 Association Rule Mining
    12.6.2 Decision Tress
    12.6.3 Clustering Analysis
    12.6.4 Memory Based Reasoning
    12.6.5 Genetic Algorithm
    12.6.6 Neural networks
    12.6.7 Outlier Analysis
    Summary
    Review Questions
    Moving into Data Mining
    Learning Objective
    Case Study
    13.1 Introduction
    13.2 How Do We Categorize Data Mining System
    13.3 Is all that is Discovered Interesting and Useful
    13.4 Applications of Data Mining
    13.4.1 Benefits of Data Mining
    13.4.2 Data Mining For Retail Industry
    13.4.3 Data Mining For Telecommunication Industry
    13.4.4 Data Mining For Banking and Finance
    13.4.5 Data Mining For Biomedical and DNA Data Analysis
    13.4.6 Data Mining For Customer Retention
    13.4.7 Data Mining For Targeted Marketing
    13.4.8 Data Mining For Customer Relationship Management
    13.5 Other Data Mining Application Areas
    13.6 Advantages and Disadvantages of Data Mining
    13.7 Web Mining
    13.7.1 Web Content Mining
    13.7.2 Web Structure Mining
    13.7.3 Web Usage Mining
    13.8 Text Mining
    13.9 Temporal Data Mining
    13.10 Sequence Mining
    13.11 Time Series Analysis
    13.12 Spatial Data Mining
    13.13 Issues and Challenges in Data Mining
    13.14 Current Trends Affecting Data Mining
    Summary
    Review Questions
    Trends In Data Warehousing
    Learning Objective
    Case Study
    14.1 Introduction
    14.2 Data Warehouse Solutions
    14.2.1 Data Warehouse Implementation Alternatives
    14.2.2 Host-Based Data Warehouses
    14.2.2.1 Single host Based Data Warehouses
    14.2.2.2 Host Based Single Stage (LAN)-Based Data Warehouses
    14.2.3 LAN- Based Workgroup Data Warehouses
    14.2.4 Multistage Data Warehouses
    14.2.5 Stationary Data Warehouses
    14.3 Web Enabled Data Warehouse
    14.3.1 Using the Web for Information Delivery
    14.3.2 Expectations from the Web as an Information Delivery Medium
    14.3.3 Super Growth Problem
    14.3.4 Data Webhouse Prominent Features
    14.3.5 The Need for Data Webhouse
    14.3.6 The Data Webhouse Architecture
    14.3.7 Similarities with Traditional Data Warehouses
    14.3.8 Building Clickstream Data Webhouse
    14.3.9 The Granularity Manager
    14.3.10 Challenges in the Clickstream Data Webhouse Lifecycle
    14.4 Distributed Data Warehouses
    14.4.1 Advantages of Distributed Data Warehousing
    14.4.2 Distributed versus Centralized Warehouse
    14.5 The Virtual Data Warehouse
    14.5.1 Why to Go For a Virtual Data Warehouse
    14.5.2 Problems with a Virtual Data Warehouse
    14.5.3 Advantages of Using a Virtual Data Warehouse
    14.6 Data Warehouse and the ODS
    14.7 Integration of Data Warehousing with other Technologies
    14.7.1 Data Warehousing and ERP
    14.7.1.1 Integrating ERP and Data Warehouse
    14.7.1.2 Issues in integrating ERP with Data Warehousing
    14.7.1.3 Common Misconceptions about DW and ERP
    14.7.1.4 Conclusion
    14.7.2 Data Warehousing and Knowledge Management
    14.7.3 Data Warehousing and EIS
    14.7.3.1 Executive information System
    14.7.3.2 Data Warehouse as a Basis for EIS
    14.7.4 Data Warehousing and CRM
    14.7.4.1 Active Data Warehousing
    14.8 Trends in Data Warehousing
    14.8.1 Multiple Data Types
    14.8.2 Data Visualization
    14.8.3 Parallel Processing
    14.8.4 Agent Technology
    14.9 Data Warehouse Futures
    Summary
    Review Questions
    Appendix
    Glossary

    Több
    0