Computer Methods for Macromolecular Sequence Analysis
Sorozatcím: Methods in Enzymology; 266;
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 142.00
-
58 894 Ft (56 090 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 5 889 Ft off)
- Kedvezményes ár 53 005 Ft (50 481 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
58 894 Ft
Beszerezhetőség
Megjelenése törölve vagy kivonva a forgalomból. Sajnos nem rendelhető.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Elsevier Science
- Megjelenés dátuma 1996. július 5.
- ISBN 9780121821678
- Kötéstípus Keménykötés
- Terjedelem711 oldal
- Méret 229x152 mm
- Súly 1110 g
- Nyelv angol 0
Kategóriák
Hosszú leírás:
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. More than 260 volumes have been published (all of them still in print) and much of the material is relevant even today--truly an essential publication for researchers in all fields of life sciences.
TöbbTartalomjegyzék:
Databases and Resources: B. Shomer, R.A.L. Harper, and G.N. Cameron, Information Services of European Bioinformatics Institute. O. White and A.R. Kerlavage, TDB: New Databases for Biological Discovery. D.G.George, L.T. Hunt, and W.C. Barker, PIR-International Protein Sequence Database. W.C. Barker, F. Pfeiffer, and D.G. George, Superfamily Classification in PIR-International Protein Sequence Database. C.H. Wu, Gene Classification ArtificialNeural System. J.G. Henikoff and S. Henikoff, Blocks Database and Its Applications. R. Staden, Indexing and Using Sequence Databases. T. Etzold, A. Ulyanov, and P. Argos, SRS: Information Retrieval System for Molecular Biology Data Banks. Searching through Databases: T.L. Madden, R.L. Tatusov, and J. Zhang, Applications of Network BLAST Server. G.D. Schuler, J.A. Epstein, H. Ohkawa, and J.A. Kans, Entrez: Molecular Biology Database and Retrieval System. P. Bork and T.J. Gibson, Applying Motif and Profile Searches. L. Patthy, Consensus Approaches in Detection of Distant Homologies. M. Gribskov and S. Veretnik, Identification of Sequence Patterns with Profile Analysis. J.-M. Claverie, Effective Large-Scale Sequence Similarity Searches. W.R. Pearson, Effective Protein Sequence Comparison. E.C. Uberbacher, Y. Xu, and R.J. Mural, Discovering and Understanding Genes in Human DNA Sequence Using GRAIL. G. Pesole, M. Attimonelli, and C. Saccone, Linguistic Analysis of Nucleotide Sequences: Algorithms for Pattern Recognition and Analysis of Codon Strategy. E.V. Koonin, R.L. Tatusov, and K.E. Rudd, Protein Sequence Comparison at Genome Scale. T.-M. Yi and E.S. Lander, IterativeTemplate Refinement: Protein-Fold Prediction Using Iterative Search and Hybrid Sequence/Structure Templates. Multiple Alignment and Phylogenetic Trees: W.R. Taylor, Multiple Protein Sequence Alignment: Algorithms and Gap Insertion. D.-F. Feng and R.F. Doolittle, Progressive Alignment of Amino Acid Sequences and Construction of Phylogenetic Trees from Them. D.G. Higgins, J.D. Thompson, and T.J. Gibson, Using CLUSTAL for Multiple Sequence Alignments. J. Hein and J. Stovlbuk, Combined DNA and Protein Alignment. J. Felsenstein, Inferring Phylogenies from Protein Sequences by Parsimony, Distance, and Likelihood Methods. N. Saitou, Reconstruction of Gene Trees from Sequence Data. W.-H. Li and X. Gu, Estimating Evolutionary Distances between DNA Sequences. S.F. Altschul and W. Gish, Local Alignment Statistics. D. Gusfield and P. Stelling, Parametric and Inverse-Parametric Sequence Alignment with XPARAL. Secondary Structure Considerations: C.D.Livingstone and G.J. Barton, Identification of Functional Residues and Secondary Structure from Protein Multiple Sequence Alignment. A. Lupas, Prediction and Analysis of Coiled-Coil Structures. B. Rost, PHD: Predicting One-Dimensional Protein Structure by Profile-Based Neural Networks. J. Garnier, J.-F. Gibrat, and B. Robson, GOR Method for Predicting Protein Secondary Structure from Amino Acid Sequence. J.C. Wootton and S. Federhen, Analysis of Compositionally Biased Regions in Sequence Databases. Three-Dimensional Considerations: M.S. Johnson, A.C.W. May, M.A. Rodionov, and J.P. Overington, Discrimination of Common Protein Folds: Application of Protein Structure to Sequence/Structure Comparisons. J.U. Bowie, K.Zhang, M. Wilmanns, and D. Eisenberg, Three-Dimensional Profiles for Measuring Compatability of Amino Acid Sequence with Three-Dimensional Structure. C.A. Orengo and W.R. Taylor, SSAP: Sequential Structure Alignment Program for Protein StructureComparison. S.E. Brenner, C. Chothia, T.J.P. Hubbard, and A.G. Murzin, Understanding Protein Structure: Using Scop for Fold Interpretation. M.B. Swindells, Detecting Structural Similarities: A User's Guide. L. Holm and C. Sander, Alignment of Three-Dimensional Protein Structures: Network Server for Database Searching. O. Poch and M. Delarue, Converting Sequence Block Alignments into Structural Insights. Author Index. Subject Index.
Több