• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Applied Data Science Using PySpark: Learn the End-to-End Predictive Model-Building Cycle

    Applied Data Science Using PySpark by Kakarla, Ramcharan; Krishnan, Sundar; Alla, Sridhar;

    Learn the End-to-End Predictive Model-Building Cycle

      • 12% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 58.84
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        24 836 Ft (23 653 Ft + 5% áfa)
      • Kedvezmény(ek) 12% (cc. 2 980 Ft off)
      • Kedvezményes ár 21 855 Ft (20 815 Ft + 5% áfa)

    24 836 Ft

    Beszerezhetőség

    A kiadónál véglegesen elfogyott, nem rendelhető. Érdemes újra keresni a címmel, hátha van újabb kiadás.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    Discover the capabilities of PySpark and its application in the realm of data science. This comprehensive guide with hand-picked examples of daily use cases will walk you through the end-to-end predictive model-building cycle with the latest techniques and tricks of the trade. 

    Applied Data Science Using PySpark is divided unto six sections which walk you through the book. In section 1, you start with the basics of PySpark focusing on data manipulation. We make you comfortable with the language and then build upon it to introduce you to the mathematical functions available off the shelf. In section 2, you will dive into the art of variable selection where we demonstrate various selection techniques available in PySpark. In section 3, we take you on a journey through machine learning algorithms, implementations, and fine-tuning techniques. We will also talk about different validation metrics and how to use them for picking the best models. Sections 4 and 5 go through machine learning pipelines and various methods available to operationalize the model and serve it through Docker/an API. In the final section, you will cover reusable objects for easy experimentation and learn some tricks that can help you optimize your programs and machine learning pipelines. 

    By the end of this book, you will have seen the flexibility and advantages of PySpark in data science applications. This book is recommended to those who want to unleash the power of parallel computing by simultaneously working with big datasets.

    You will:

    • Build an end-to-end predictive model
    • Implement multiple variable selection techniques
    • Operationalize models
    • Master multiple algorithms and implementations  

    Több

    Hosszú leírás:

    Discover the capabilities of PySpark and its application in the realm of data science. This comprehensive guide with hand-picked examples of daily use cases will walk you through the end-to-end predictive model-building cycle with the latest techniques and tricks of the trade. 



    Applied Data Science Using PySpark is divided unto six sections which walk you through the book. In section 1, you start with the basics of PySpark focusing on data manipulation. We make you comfortable with the language and then build upon it to introduce you to the mathematical functions available off the shelf. In section 2, you will dive into the art of variable selection where we demonstrate various selection techniques available in PySpark. In section 3, we take you on a journey through machine learning algorithms, implementations, and fine-tuning techniques. We will also talk about different validation metrics and how to use them for picking the best models. Sections 4 and 5 go through machine learning pipelines and various methods available to operationalize the model and serve it through Docker/an API. In the final section, you will cover reusable objects for easy experimentation and learn some tricks that can help you optimize your programs and machine learning pipelines. 



    By the end of this book, you will have seen the flexibility and advantages of PySpark in data science applications. This book is recommended to those who want to unleash the power of parallel computing by simultaneously working with big datasets.



    What You Will Learn



    • Build an end-to-end predictive model
    • Implement multiple variable selection techniques
    • Operationalize models
    • Master multiple algorithms and implementations  



    Who This Book is For



    Data scientists and machine learning and deep learning engineers who want to learn and use PySpark for real-time analysis of streamingdata.

    Több

    Tartalomjegyzék:

    Chapter 1: Setting up the Pyspark Environment .- Chapter 2: Basic Statistics and Visualizations.- Chapter 3: :Variable Selection.- Chapter 4: Introduction to different supervised machine algorithms, implementations & Fine-tuning techniques.- Chapter 5: Model Validation and selecting the best model.- Chapter 6: Unsupervised and recommendation algorithms.- Chapter 7:End to end modeling pipelines.- Chapter 8: Productionalizing a machine learning model.- Chapter 9: Experimentations.- Chapter 10:Other Tips: Optional.

    Több
    0