
Applied Data Science Using PySpark
Learn the End-to-End Predictive Model-Building Cycle
-
12% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 58.84
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 12% (cc. 2 980 Ft off)
- Kedvezményes ár 21 855 Ft (20 815 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
24 836 Ft
Beszerezhetőség
A kiadónál véglegesen elfogyott, nem rendelhető. Érdemes újra keresni a címmel, hátha van újabb kiadás.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma First Edition
- Kiadó Apress
- Megjelenés dátuma 2020. december 18.
- Kötetek száma 1 pieces, Book
- ISBN 9781484264997
- Kötéstípus Puhakötés
- Terjedelem410 oldal
- Méret 254x178 mm
- Súly 824 g
- Nyelv angol
- Illusztrációk 190 Illustrations, black & white 0
Kategóriák
Rövid leírás:
Discover the capabilities of PySpark and its application in the realm of data science. This comprehensive guide with hand-picked examples of daily use cases will walk you through the end-to-end predictive model-building cycle with the latest techniques and tricks of the trade.
Applied Data Science Using PySpark is divided unto six sections which walk you through the book. In section 1, you start with the basics of PySpark focusing on data manipulation. We make you comfortable with the language and then build upon it to introduce you to the mathematical functions available off the shelf. In section 2, you will dive into the art of variable selection where we demonstrate various selection techniques available in PySpark. In section 3, we take you on a journey through machine learning algorithms, implementations, and fine-tuning techniques. We will also talk about different validation metrics and how to use them for picking the best models. Sections 4 and 5 go through machine learning pipelines and various methods available to operationalize the model and serve it through Docker/an API. In the final section, you will cover reusable objects for easy experimentation and learn some tricks that can help you optimize your programs and machine learning pipelines.
By the end of this book, you will have seen the flexibility and advantages of PySpark in data science applications. This book is recommended to those who want to unleash the power of parallel computing by simultaneously working with big datasets.
You will:
- Build an end-to-end predictive model
- Implement multiple variable selection techniques
- Operationalize models
- Master multiple algorithms and implementations
Hosszú leírás:
Discover the capabilities of PySpark and its application in the realm of data science. This comprehensive guide with hand-picked examples of daily use cases will walk you through the end-to-end predictive model-building cycle with the latest techniques and tricks of the trade.
Applied Data Science Using PySpark is divided unto six sections which walk you through the book. In section 1, you start with the basics of PySpark focusing on data manipulation. We make you comfortable with the language and then build upon it to introduce you to the mathematical functions available off the shelf. In section 2, you will dive into the art of variable selection where we demonstrate various selection techniques available in PySpark. In section 3, we take you on a journey through machine learning algorithms, implementations, and fine-tuning techniques. We will also talk about different validation metrics and how to use them for picking the best models. Sections 4 and 5 go through machine learning pipelines and various methods available to operationalize the model and serve it through Docker/an API. In the final section, you will cover reusable objects for easy experimentation and learn some tricks that can help you optimize your programs and machine learning pipelines.
By the end of this book, you will have seen the flexibility and advantages of PySpark in data science applications. This book is recommended to those who want to unleash the power of parallel computing by simultaneously working with big datasets.
What You Will Learn
- Build an end-to-end predictive model
- Implement multiple variable selection techniques
- Operationalize models
- Master multiple algorithms and implementations
Who This Book is For
Data scientists and machine learning and deep learning engineers who want to learn and use PySpark for real-time analysis of streamingdata.
Több
Tartalomjegyzék:
Chapter 1: Setting up the Pyspark Environment .- Chapter 2: Basic Statistics and Visualizations.- Chapter 3: :Variable Selection.- Chapter 4: Introduction to different supervised machine algorithms, implementations & Fine-tuning techniques.- Chapter 5: Model Validation and selecting the best model.- Chapter 6: Unsupervised and recommendation algorithms.- Chapter 7:End to end modeling pipelines.- Chapter 8: Productionalizing a machine learning model.- Chapter 9: Experimentations.- Chapter 10:Other Tips: Optional.
Több
Fundamentals of Predictive Text Mining
24 836 Ft
21 855 Ft

Applied Data Science Using PySpark: Learn the End-to-End Predictive Model-Building Cycle
24 836 Ft
21 855 Ft

Land Resources Monitoring, Modeling, and Mapping with Remote Sensing
108 570 Ft
97 713 Ft

An Introduction to Neural Networks
37 012 Ft
33 311 Ft

Neural Networks and Deep Learning: A Textbook
22 578 Ft
19 868 Ft

Land Resources Monitoring, Modeling, and Mapping with Remote Sensing
41 942 Ft
37 748 Ft

App Development Using iOS iCloud: Incorporating CloudKit with Swift in Xcode
27 094 Ft
23 843 Ft

Writing Errors and Their Ways: Correction Strategies for the 21st Century
28 623 Ft
26 333 Ft

Neuromorphic Computing Principles and Organization
38 385 Ft
33 779 Ft

An Introduction To Experimental Design And Statistics For Biology
37 501 Ft
33 751 Ft