
Applied Data Science Using PySpark
Learn the End-to-End Predictive Model-Building Cycle
- Publisher's listprice EUR 58.84
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 12% (cc. 2 980 Ft off)
- Discounted price 21 855 Ft (20 815 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
24 836 Ft
Availability
Out of print
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number First Edition
- Publisher Apress
- Date of Publication 18 December 2020
- Number of Volumes 1 pieces, Book
- ISBN 9781484264997
- Binding Paperback
- No. of pages410 pages
- Size 254x178 mm
- Weight 824 g
- Language English
- Illustrations 190 Illustrations, black & white 0
Categories
Short description:
Discover the capabilities of PySpark and its application in the realm of data science. This comprehensive guide with hand-picked examples of daily use cases will walk you through the end-to-end predictive model-building cycle with the latest techniques and tricks of the trade.
Applied Data Science Using PySpark is divided unto six sections which walk you through the book. In section 1, you start with the basics of PySpark focusing on data manipulation. We make you comfortable with the language and then build upon it to introduce you to the mathematical functions available off the shelf. In section 2, you will dive into the art of variable selection where we demonstrate various selection techniques available in PySpark. In section 3, we take you on a journey through machine learning algorithms, implementations, and fine-tuning techniques. We will also talk about different validation metrics and how to use them for picking the best models. Sections 4 and 5 go through machine learning pipelines and various methods available to operationalize the model and serve it through Docker/an API. In the final section, you will cover reusable objects for easy experimentation and learn some tricks that can help you optimize your programs and machine learning pipelines.
By the end of this book, you will have seen the flexibility and advantages of PySpark in data science applications. This book is recommended to those who want to unleash the power of parallel computing by simultaneously working with big datasets.
You will:
- Build an end-to-end predictive model
- Implement multiple variable selection techniques
- Operationalize models
- Master multiple algorithms and implementations
Long description:
Discover the capabilities of PySpark and its application in the realm of data science. This comprehensive guide with hand-picked examples of daily use cases will walk you through the end-to-end predictive model-building cycle with the latest techniques and tricks of the trade.
Applied Data Science Using PySpark is divided unto six sections which walk you through the book. In section 1, you start with the basics of PySpark focusing on data manipulation. We make you comfortable with the language and then build upon it to introduce you to the mathematical functions available off the shelf. In section 2, you will dive into the art of variable selection where we demonstrate various selection techniques available in PySpark. In section 3, we take you on a journey through machine learning algorithms, implementations, and fine-tuning techniques. We will also talk about different validation metrics and how to use them for picking the best models. Sections 4 and 5 go through machine learning pipelines and various methods available to operationalize the model and serve it through Docker/an API. In the final section, you will cover reusable objects for easy experimentation and learn some tricks that can help you optimize your programs and machine learning pipelines.
By the end of this book, you will have seen the flexibility and advantages of PySpark in data science applications. This book is recommended to those who want to unleash the power of parallel computing by simultaneously working with big datasets.
What You Will Learn
- Build an end-to-end predictive model
- Implement multiple variable selection techniques
- Operationalize models
- Master multiple algorithms and implementations
Who This Book is For
Data scientists and machine learning and deep learning engineers who want to learn and use PySpark for real-time analysis of streamingdata.
More
Table of Contents:
Chapter 1: Setting up the Pyspark Environment .- Chapter 2: Basic Statistics and Visualizations.- Chapter 3: :Variable Selection.- Chapter 4: Introduction to different supervised machine algorithms, implementations & Fine-tuning techniques.- Chapter 5: Model Validation and selecting the best model.- Chapter 6: Unsupervised and recommendation algorithms.- Chapter 7:End to end modeling pipelines.- Chapter 8: Productionalizing a machine learning model.- Chapter 9: Experimentations.- Chapter 10:Other Tips: Optional.
More
Land Resources Monitoring, Modeling, and Mapping with Remote Sensing
108 570 HUF
97 713 HUF

Applied Data Science Using PySpark: Learn the End-to-End Predictive Model-Building Cycle
24 836 HUF
21 855 HUF

Fundamentals of Predictive Text Mining
24 836 HUF
21 855 HUF

PHP 8 Objects, Patterns, and Practice: Mastering OO Enhancements, Design Patterns, and Essential Development Tools
27 094 HUF
23 843 HUF

Identifiability and Regression Analysis of Biological Systems Models: Statistical and Mathematical Foundations and R Scripts
22 578 HUF
19 868 HUF

Land Resources Monitoring, Modeling, and Mapping with Remote Sensing
41 942 HUF
37 748 HUF

Quantification of Biophysical Parameters in Medical Imaging
22 578 HUF
19 868 HUF