
Analysis and Geometry of Markov Diffusion Operators
Sorozatcím: Grundlehren der mathematischen Wissenschaften; 348;
-
8% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 149.79
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 8% (cc. 5 083 Ft off)
- Kedvezményes ár 58 457 Ft (55 674 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
63 540 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 2014
- Kiadó Springer
- Megjelenés dátuma 2013. november 27.
- Kötetek száma 1 pieces, Book
- ISBN 9783319002262
- Kötéstípus Keménykötés
- Terjedelem552 oldal
- Méret 235x155 mm
- Súly 9753 g
- Nyelv angol
- Illusztrációk XX, 552 p. 0
Kategóriák
Rövid leírás:
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations.
The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium andgeometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
Hosszú leírás:
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations.
The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium andgeometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
?The book is friendly written and is of a rich content. With simple examples, main ideas of the study are clearly explained and naturally extended to a general framework, so that main progress in the field made for the past decades is presented in a smooth way. The monograph is undoubtedly a significant reference for further development of diffusion semigroups and related topics.? (Feng-Yu Wang, zbMATH 1376.60002, 2018)
?It is extremely rich. It is more original and inspirational than a treatise. One can use it and benefit from it in many ways: as a reference book, as an inspiration source, by focusing on a property or on an example. ? From the beginning to the end, this book definitely has a strong personality and a characteristic taste. ? anybody who wants to explore analytic, probabilistic or geometric properties of Markov semigroupsto have a look at it first.? (Thierry Coulhon, Jahresbericht der Deutschen Math-Vereinigung, Vol. 119, 2017)
?This impressive monograph is about an important and highly active area that straddles the fertile land occupied by both probability and analysis. ? It is written with great clarity and style, and was clearly a labour of love for the authors. I am convinced that it will be a valuable resource for researchers in analysis and probability for many years to come.? (David Applebaum, The Mathematical Gazette, Vol. 100 (548), July, 2016)
TöbbTartalomjegyzék:
Introduction.- Part I Markov semigroups, basics and examples: 1.Markov semigroups.- 2.Model examples.- 3.General setting.- Part II Three model functional inequalities: 4.Poincaré inequalities.- 5.Logarithmic Sobolev inequalities.- 6.Sobolev inequalities.- Part III Related functional, isoperimetric and transportation inequalities: 7.Generalized functional inequalities.- 8.Capacity and isoperimetry-type inequalities.- 9.Optimal transportation and functional inequalities.- Part IV Appendices: A.Semigroups of bounded operators on a Banach space.- B.Elements of stochastic calculus.- C.Some basic notions in differential and Riemannian geometry.- Notations and list of symbols.- Bibliography.- Index.
Több
Structuring Music Through Markup Language: Designs and Architectures
86 961 Ft
80 004 Ft