• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Modeling and Computational Methods for Kinetic Equations

    Modeling and Computational Methods for Kinetic Equations by Degond, Pierre; Pareschi, Lorenzo; Russo, Giovanni;

    Sorozatcím: Modeling and Simulation in Science, Engineering and Technology;

      • 12% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 106.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        44 374 Ft (42 261 Ft + 5% áfa)
      • Kedvezmény(ek) 12% (cc. 5 325 Ft off)
      • Kedvezményes ár 39 049 Ft (37 190 Ft + 5% áfa)

    44 374 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    "

    In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods.

    This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works.

    The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media modeling, quantum kinetic modeling, and coagulation-fragmentation problems.

    ""Modeling and Computational Methods of Kinetic Equations"" will be accessible to readers working in different communities where kinetic theory is important: graduate students, researchers and practitioners in mathematical physics, applied mathematics, and various branches of engineering. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.

    In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused works.

    Specific applications presented include plasma kinetic models, traffic flow models, granular media models, and coagulation-fragmentation problems. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.

    "

    Több

    Tartalomjegyzék:

    I. Geometric Operators and the Inde.- Spectral invariants of operators of Dirac type on partitioned manifolds.- Index theory of Dirac operators on manifolds with corners up to codimension two.- Index defects in the theory of spectral boundary value problems.- Cyclic homology and pseudo differential operators, a survey.- Index and secondary index theory for flat bundles with duality.- II. Elliptic Boundary Value Problems.- Toeplitz operators, and ellipticity of boundary value problems with global projection conditions.- On the tangential oblique derivative problem — methods, results, open problems.- A note on boundary value problems on manifolds with cylindrical ends.- Relative elliptic theory.- Appendix. Fourier Integral Operators.- A.1. Homogeneous Lagrangian manifolds.- A.2. Local description of homogeneous Lagrangian manifolds.- A.3. Composition of homogeneous Lagrangian manifolds.- A.4. Definition of Fourier integral operators.- A.5. Pseudodifferential operators as Fourier integral operators.- A.6. Boundedness theorems.- A.7. Composition theorems.- References.

    Több