• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Machine Learning with PySpark: With Natural Language Processing and Recommender Systems

    Machine Learning with PySpark by Singh, Pramod;

    With Natural Language Processing and Recommender Systems

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 32.69
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        13 867 Ft (13 206 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 1 109 Ft off)
      • Kedvezményes ár 12 757 Ft (12 150 Ft + 5% áfa)

    13 867 Ft

    Beszerezhetőség

    Bizonytalan a beszerezhetőség. Érdemes még egyszer keresni szerzővel és címmel. Ha nem talál másik, kapható kiadást, forduljon ügyfélszolgálatunkhoz!

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed.
    • Kiadó Springer, Berlin
    • Megjelenés dátuma 2018. január 1.
    • Kötetek száma 1 pieces, Book

    • ISBN 9781484241301
    • Kötéstípus Puhakötés
    • Terjedelem223 oldal
    • Méret 234x156x13 mm
    • Súly 402 g
    • Nyelv angol
    • Illusztrációk 1 Farbabb., 149 SW-Abb. Illustrations, black & white
    • 0

    Kategóriák

    Rövid leírás:

    Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. 

    Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You?ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. 

    After reading this book, you will understand how to use PySpark?s machine learning library to build and train various machine learning models. Additionally you?ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.

    You will:
    • Build a spectrum of supervised and unsupervised machine learning algorithms
    • Implement machine learning algorithms with Spark MLlib libraries
    • Develop a recommender system with Spark MLlib libraries
    • Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model

    Több

    Hosszú leírás:

    Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark.
    Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You'll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification.
    After reading this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models. Additionally you'll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.
    What You Will Learn

    • Build a spectrum of supervised and unsupervised machine learning algorithms
    • Implement machine learning algorithms with Spark MLlib libraries
    • Develop a recommender system with Spark MLlib libraries
    • Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model

    Who This Book Is For
    Data science and machine learning professionals.

    Több

    Tartalomjegyzék:

    Chapter 1: Evolution of DataChapter 2: Introduction to Machine LearningChapter 3: Data ProcessingChapter 4: Linear RegressionChapter 5: Logistic RegressionChapter 6: Random ForestsChapter 7: Recommender SystemsChapter 8: ClusteringChapter 9: Natural Language Processing

    Több