• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Elliptic Carleman Estimates and Applications to Stabilization and Controllability, Volume II: General Boundary Conditions on Riemannian Manifolds

    Elliptic Carleman Estimates and Applications to Stabilization and Controllability, Volume II by Le Rousseau, Jérôme; Lebeau, Gilles; Robbiano, Luc;

    General Boundary Conditions on Riemannian Manifolds

    Sorozatcím: Progress in Nonlinear Differential Equations and Their Applications; 98;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 181.89
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        77 157 Ft (73 483 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 15 431 Ft off)
      • Discounted price 61 726 Ft (58 786 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2022
    • Kiadó Birkhäuser
    • Megjelenés dátuma 2022. április 23.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783030886691
    • Kötéstípus Keménykötés
    • Terjedelem547 oldal
    • Méret 254x178 mm
    • Súly 1237 g
    • Nyelv angol
    • Illusztrációk 8 Illustrations, black & white; 9 Illustrations, color
    • 298

    Kategóriák

    Rövid leírás:

    This monograph explores applications of Carleman estimates in the study of stabilization and controllability properties of partial differential equations, including quantified unique continuation, logarithmic stabilization of the wave equation, and null-controllability of the heat equation.  Where the first volume derived these estimates in regular open sets in Euclidean space and Dirichlet boundary conditions, here they are extended to Riemannian manifolds and more general boundary conditions.


    The book begins with the study of Lopatinskii-Sapiro boundary conditions for the Laplace-Beltrami operator, followed by derivation of Carleman estimates for this operator on Riemannian manifolds.  Applications of Carleman estimates are explored next: quantified unique continuation issues, a proof of the logarithmic stabilization of the boundary-damped wave equation, and a spectral inequality with general boundary conditions to derive the null-controllability result for the heat equation. Two additional chapters consider some more advanced results on Carleman estimates.  The final part of the book is devoted to exposition of some necessary background material: elements of differential and Riemannian geometry, and Sobolev spaces and Laplace problems on Riemannian manifolds.

    Több

    Hosszú leírás:

    This monograph explores applications of Carleman estimates in the study of stabilization and controllability properties of partial differential equations, including quantified unique continuation, logarithmic stabilization of the wave equation, and null-controllability of the heat equation.  Where the first volume derived these estimates in regular open sets in Euclidean space and Dirichlet boundary conditions, here they are extended to Riemannian manifolds and more general boundary conditions.

    The book begins with the study of Lopatinskii-Sapiro boundary conditions for the Laplace-Beltrami operator, followed by derivation of Carleman estimates for this operator on Riemannian manifolds.  Applications of Carleman estimates are explored next: quantified unique continuation issues, a proof of the logarithmic stabilization of the boundary-damped wave equation, and a spectral inequality with general boundary conditions to derive the null-controllability result for the heat equation. Two additional chapters consider some more advanced results on Carleman estimates.  The final part of the book is devoted to exposition of some necessary background material: elements of differential and Riemannian geometry, and Sobolev spaces and Laplace problems on Riemannian manifolds.

    Több

    Tartalomjegyzék:

    Introduction.- Part 1: General Boundary Conditions.- Lopatinskii-Sapiro Boundary Conditions.- Fredholm Properties of Second-Order Elliptic Operators.- Selfadjoint Operators under General Boundary Conditions.- Part 2: Carleman Estimates on Riemannian Manifolds.- Estimates on Riemannian Manifolds for Dirichlet Boundary Conditions.- Pseudo-Differential Operators on a Half-Space.- Sobolev Norms with a Large Parameter on a Manifold.- Estimates for General Boundary Conditions.- Part 3: Applications.- Quantified Unique Continuation on a Riemannian Manifold.- Stabilization of Waves under Neumann Boundary Damping.- Spectral Inequality for General Boundary Conditions and Applications.- Part 4: Further Aspects of Carleman Estimates.- Carleman Estimates with Source Terms of Weaker Regularity.- Optimal Estimates at the Boundary.- Background Material: Geometry.- Elements of Differential Geometry.- Integration and Differential Operators on Manifolds.- Elements of Riemannian Geometry.- Sobolev Spacesand Laplace Problems on a Riemannian Manifold.- Bibliography.- Index.- Index of Notation.

    Több
    Mostanában megtekintett
    previous
    Elliptic Carleman Estimates and Applications to Stabilization and Controllability, Volume II: General Boundary Conditions on Riemannian Manifolds

    Elliptic Carleman Estimates and Applications to Stabilization and Controllability, Volume II: General Boundary Conditions on Riemannian Manifolds

    Le Rousseau, Jérôme; Lebeau, Gilles; Robbiano, Luc;

    77 157 Ft

    next