• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Bayesian Statistical Modeling with Stan, R, and Python

    Bayesian Statistical Modeling with Stan, R, and Python by Matsuura, Kentaro;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 160.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        68 079 Ft (64 837 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 13 616 Ft off)
      • Discounted price 54 463 Ft (51 870 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2022
    • Kiadó Springer
    • Megjelenés dátuma 2023. január 25.
    • Kötetek száma 1 pieces, Book

    • ISBN 9789811947544
    • Kötéstípus Keménykötés
    • Terjedelem385 oldal
    • Méret 235x155 mm
    • Súly 850 g
    • Nyelv angol
    • Illusztrációk 251 Illustrations, black & white; 10 Illustrations, color
    • 474

    Kategóriák

    Rövid leírás:

    This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.

    The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.

    Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.


    Több

    Hosszú leírás:

    This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.

    The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.

    Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.


    Több

    Tartalomjegyzék:

    Introduction.- Introduction of Stan.- Essential Components and Techniques for Experts.- Advanced  Topics for Real-world Data.

    Több
    Mostanában megtekintett
    previous
    Bayesian Statistical Modeling with Stan, R, and Python

    Bayesian Statistical Modeling with Stan, R, and Python

    Matsuura, Kentaro;

    68 079 Ft

    A Concise Introduction to Robot Programming with ROS2

    A Concise Introduction to Robot Programming with ROS2

    Rico, Francisco Martín;

    22 769 Ft

    From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory: A Volume in Honor of Lance Littlejohn's 70th Birthday

    From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory: A Volume in Honor of Lance Littlejohn's 70th Birthday

    Gesztesy, Fritz; Martinez-Finkelshtein, Andrei; (ed.)

    59 001 Ft

    Spreadsheet Problem Solving and Programming for Engineers and Scientists

    Spreadsheet Problem Solving and Programming for Engineers and Scientists

    Clough, David E.; Chapra, Steven C.;

    50 610 Ft

    Artificial Intelligence and Deep Learning for Computer Network: Management and Analysis

    Artificial Intelligence and Deep Learning for Computer Network: Management and Analysis

    Roy, Sangita; Subhra Chakraborty, Rajat; Mathew, Jimson;(ed.)

    55 671 Ft

    Microsoft Excel VBA and Macros (Office 2021 and Microsoft 365)

    Microsoft Excel VBA and Macros (Office 2021 and Microsoft 365)

    Jelen, Bill

    17 478 Ft

    Functional Estimation For Density, Regression Models And Processes (Second Edition)

    Functional Estimation For Density, Regression Models And Processes (Second Edition)

    Pons, Odile;

    40 488 Ft

    Applied Meta-Analysis with R and Stata

    Applied Meta-Analysis with R and Stata

    Chen, Ding-Geng (Din); Peace, Karl E.;

    65 793 Ft

    Material Handling and Production Systems Modelling - based on Queuing Models: Queuing networks applied to material handling and production systems

    Material Handling and Production Systems Modelling - based on Queuing Models: Queuing networks applied to material handling and production systems

    Furmans, Kai;

    27 212 Ft

    Making Numbers Count: The art and science of communicating numbers

    Making Numbers Count: The art and science of communicating numbers

    Heath, Chip; Starr, Karla;

    7 586 Ft

    next