• Contact

  • Newsletter

  • About us

  • Delivery options

  • Prospero Book Market Podcast

  • Quantification of Uncertainty: Improving Efficiency and Technology: QUIET selected contributions

    Quantification of Uncertainty: Improving Efficiency and Technology by D'Elia, Marta; Gunzburger, Max; Rozza, Gianluigi;

    QUIET selected contributions

    Series: Lecture Notes in Computational Science and Engineering; 137;

      • GET 20% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice EUR 106.99
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        44 374 Ft (42 261 Ft + 5% VAT)
      • Discount 20% (cc. 8 875 Ft off)
      • Discounted price 35 499 Ft (33 809 Ft + 5% VAT)

    44 374 Ft

    db

    Availability

    printed on demand

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Product details:

    • Edition number 1st ed. 2020
    • Publisher Springer International Publishing
    • Date of Publication 1 August 2021
    • Number of Volumes 1 pieces, Book

    • ISBN 9783030487232
    • Binding Paperback
    • See also 9783030487201
    • No. of pages282 pages
    • Size 235x155 mm
    • Weight 456 g
    • Language English
    • Illustrations XI, 282 p. 113 illus., 90 illus. in color. Illustrations, black & white
    • 175

    Categories

    Long description:

    This book explores four guiding themes – reduced order modelling, high dimensional problems, efficient algorithms, and applications – by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book’s content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.


    More

    Table of Contents:

    1. Adeli, E. et al., Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods.- 2. Brugiapaglia S., A compressive spectral collocation method for the diffusion equation under the restricted isometry property.- 3. D’Elia, M. et al., Surrogate-based Ensemble Grouping Strategies for Embedded Sampling-based Uncertainty Quantification.- 4. Afkham, B.M. et al., Conservative Model Order Reduction for Fluid Flow.- 5. Clark C.L. and Winter C.L., A Semi-Markov Model of Mass Transport through Highly Heterogeneous Conductivity Fields.- 6. Matthies, H.G., Analysis of Probabilistic and Parametric Reduced Order Models.- 7. Carraturo, M. et al., Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains.- 8. Boccadifuoco, A. et al., Uncertainty quantification applied to hemodynamic simulations of thoracic aorta aneurysms: sensitivity to inlet conditions.- 9. Anderlini, A.et al., Cavitation model parameter calibration for simulations of three-phase injector flows.- 10. Hijazi, S. et al., Non-Intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: a Comparison and Perspectives.- 11. Bulté, M. et al., A practical example for the non-linear Bayesian filtering of model parameters.

    More