Pseudomonas taiwanensis VLB120 synthetic biology: parts, modules, and chassis
DE
Series: Applied Microbiology; 31;
- Publisher's listprice EUR 49.00
-
20 322 Ft (19 355 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 5% (cc. 1 016 Ft off)
- Discounted price 19 307 Ft (18 387 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
20 322 Ft
Availability
printed on demand
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Apprimus Verlag
- Date of Publication 1 January 2023
- Number of Volumes Großformatiges Paperback. Klappenbroschur
- ISBN 9783985551705
- Binding Paperback
- No. of pages124 pages
- Size 7x148x210 mm
- Weight 243 g
- Language English 425
Categories
Short description:
Climate change is a pressing global issue that is caused by the consumption of fossil fuels. Cell factories are biological systems that are engineered to produce a wide range of products which can play a crucial part in reducing the dependency on fossil fuels. Within this thesis the genetic toolbox of Pseudomonas taiwanensis VLB120 was expanded and implemented to generate a chassis strain to enlarge the product portfolio of this emerging industrial-relevant cell factory.
MoreLong description:
Climate change is a pressing global issue that is caused by the consumption of fossil fuels, which releases greenhouse gases into the atmosphere. Cell factories are biological systems that are engineered to produce a wide range of products, such as biofuels, bioplastics, and pharmaceuticals which can play a crucial part in reducing the dependency on fossil fuels. Additionally, cell factories can be made more efficient and sustainable by using advanced technologies such as metabolic engineering and synthetic biology. This thesis aimed to expand the genetic toolbox of Pseudomonas taiwanensis VLB120 and implement them for the generation of a chassis strain to enlarge the product portfolio of this emerging industrial-relevant cell factory. Sigma-70 dependent promoter libraries were generated and integrated into the single genomic locus attTn7 of P. taiwanensis VLB120 and E. coli TOP10 and characterized using a standardized promoter strength unit. Such characterization standards gave an insight into how a specific promoter behaves in each organism and create sets of promoters relevant to metabolic engineering purposes. This thesis also focused on the assessment of an optimized gene expression architecture to achieve high gene expression. This module achieved high gene expression across several expression vectors of two fluorescent reporter genes by incorporating mRNA stabilizing and translation-enhancing genetic parts. This module was also applied to increase the productivities of a short acetoin pathway and the relevance of mRNA stability was proven through qPCR-based mRNA decay rates. These tools were a component in the development of a P. taiwanensis VLB120 propionyl-CoA chassis strain to expand the portfolio of this pseudomonad to odd-chain products. The successful incorporation of propionyl-CoA in the metabolism of P. taiwanensis VLB120 was confirmed by the production of propionate after identifying the deletion of the methylcitrate synthase as a crucial factor. In summary, this thesis contributes to the development of P. taiwanensis VLB120 as an emerging industrial-relevant workhouse by expanding the available genetic toolbox and setting the first stone to produce odd-chain products in this organism. It also contributes to the standardization of genetic tools characterization and cross-species studies to aid the identification of the most suitable microbe for specific biotechnological applications and fasten the human independence of fossil fuels.
More