Pattern Recognition and Computer Vision
7th Chinese Conference, PRCV 2024, Urumqi, China, October 18–20, 2024, Proceedings, Part VII
Series: Lecture Notes in Computer Science; 15037;
- Publisher's listprice EUR 87.73
-
36 386 Ft (34 653 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 7 277 Ft off)
- Discounted price 29 109 Ft (27 722 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
36 386 Ft
Availability
printed on demand
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 2024
- Publisher Springer Nature Singapore
- Date of Publication 3 November 2024
- Number of Volumes 1 pieces, Book
- ISBN 9789819785100
- Binding Paperback
- No. of pages587 pages
- Size 235x155 mm
- Language English
- Illustrations XIV, 587 p. 203 illus., 182 illus. in color. Illustrations, black & white 609
Categories
Long description:
This 15-volume set LNCS 15031-15045 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2024, held in Urumqi, China, during October 18–20, 2024.
The 579 full papers presented were carefully reviewed and selected from 1526 submissions. The papers cover various topics in the broad areas of pattern recognition and computer vision, including machine learning, pattern classification and cluster analysis, neural network and deep learning, low-level vision and image processing, object detection and recognition, 3D vision and reconstruction, action recognition, video analysis and understanding, document analysis and recognition, biometrics, medical image analysis, and various applications.
MoreTable of Contents:
Scene Text Recognition via k-NN Attention-based Decoder and Margin-based Softmax LossReal-Time Text Detection with Multi-Level Feature Fusion and Pixel ClusteringREFINED AND LOCALITY-ENHANCED FEATURE FOR HANDWRITTEN MATHEMATICAL EXPRESSION RECOGNITIONLearning Fine-grained and Semantically Aware Mamba Representations for Tampered Text Detection in ImagesDual Feature Enhanced Scene Text Recognition Method for Low-Resource UyghurSegmentation-free Todo Mongolian OCR and Its Public DatasetHybrid Encoding Method for Scene Text Recognition in Low-Resource UyghurROBC: a Radical-Level Oracle Bone Character DatasetIntegrated Recognition of Arbitrary-Oriented Multi-Line Billet NumberImproving Scene Text Recognition with Counting Aware Contrastive Learning and Attention AlignmentGridMask: An Efficient Scheme for Real Time Curved Scene Text DetectionTibetan Handwriting Recognition Method based on Structural Re-parameterization ViT and Vertical AttentionMFH: Marrying Frequency Domain with Handwritten Mathematical Expression RecognitionLeveraging Structure Knowledge and Deep Models for the Detection of Abnormal Handwritten Text.- OCR-aware Scene Graph Generation via Multi-modal Object Representation Enhancement and Logical Bias Learning.- Enhancing Transformer-based Table Structure Recognition for Long Tables.- Show Exemplars and Tell Me What You See: In-context Learning with Frozen Large Language Models for Text.- VQAMLR-NET: an arbitrary skew angle detection algorithm for complex layout document images.- TextViTCNN: Enhancing Natural Scene Text Recognition with Hybrid Transformer and Convolutional NetworksEnhancing Visual Information Extraction with Large Language Models through Layout-aware Instruction Tuning.- SFENet: Arbitrary Shapes Scene Text Detection with Semantic Feature ExtractorImproving Zero-Shot Image Captioning Efficiency with Metropolis-Hastings Sampling.- Improving Text Classification Performance through Multimodal Representation.- A Multi-feature Fusion Approach for Words Recognition of Ancient Mongolian Documents.- TableRocket: An Efficient and Effective Framework for Table Reconstruction.- Not All Texts Are the Same: Dynamically Querying Texts for Scene Text Detection.- Multi-Modal Attention based on 2D Structured Sequence for Table Recognition.- A Two-stream Hybrid CNN-Transformer Network for Skeleton-based Human Interaction Recognition.- Skeleton-Language Pre-training to Collaborate with Self-Supervised Human Action Recognition.- Spatio-Temporal Contrastive Learning for Compositional Action RecognitionPath-Guided Motion Prediction with Multi-View Scene Perception.- Privacy-preserving Action Recognition: A Survey.- Attention-based Spatio-temporal modeling with 3D Convolutional Neural Networks for Dynamic Gesture Recognition.- MIT: Multi-cue Injected Transformer for Two-stage HOI Detection.- DIDA: Dynamic Individual-to-integrated Augmentation for Self-Supervised Skeleton-Based Action Recognition.- Multi-scale Spatial and Temporal Feature Aggregation Graph Convolutional Network for Skeleton-Based Action Recognition.- Improving Video Representation of Vision-Language Model with Decoupled Explicit Temporal Modeling.- KS-FuseNet: An efficient action recognition method based on keyframe selection and feature fusion.- Dynamic Skeleton Association Transformer for dyadic Interaction Action RecognitionSpecies-Aware Guidance for Animal Action Recognition with Vision-Language Knowledge.
More
Introduction to Data Compression
26 938 HUF
24 244 HUF