Methods in Nonlinear Analysis
Series: Springer Monographs in Mathematics;
- Publisher's listprice EUR 106.99
-
44 374 Ft (42 261 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 8 875 Ft off)
- Discounted price 35 499 Ft (33 809 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
44 374 Ft
Availability
printed on demand
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 2005
- Publisher Springer Berlin Heidelberg
- Date of Publication 21 October 2010
- Number of Volumes 1 pieces, Previously published in hardcover
- ISBN 9783642063275
- Binding Paperback
- See also 9783540241331
- No. of pages442 pages
- Size 235x155 mm
- Weight 688 g
- Language English
- Illustrations X, 442 p. Illustrations, black & white 0
Categories
Long description:
Nonlinear analysis has developed rapidly in the last three decades. Theories, techniques and results in many different branches of mathematics have been combined in solving nonlinear problems. This book collects and reorganizes up-to-date materials scattered throughout the literature from the methodology point of view, and presents them in a systematic way. It contains the basic theories and methods with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies.
There are five chapters that cover linearization, fixed-point theorems based on compactness and convexity, topological degree theory, minimization and topological variational methods. Each chapter combines abstract, classical and applied analysis. Particular topics included are bifurcation, perturbation, gluing technique, transversality, Nash–Moser technique, Ky Fan's inequality and equilibrium in game theory, setvalued mappings and differential equations with discontinuous nonlinear terms, multiple solutions in partial differential equations, direct method, quasiconvexity and relaxation, Young measure, compensation compactness method and Hardy space, concentration compactness and best constants, Ekeland variational principle, infinite-dimensional Morse theory, minimax method, index theory with group action, and Conley index theory.
All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry. The book aims to find a balance between theory and applications and will contribute to filling the gap between texts that either only study the abstract theory, or focus on some special equations.
Nonlinear analysis has developed rapidly in the last three decades. Theories, techniques and results in many different branches of mathematics have been combined in solving nonlinear problems. This book collects and reorganizes up-to-date materials scattered throughout the literature from the methodology point of view, and presents them in a systematic way. Topics covered include linearization, fixed-point theorems based on compactness and convexity, topological degree theory, minimization and topological variational methods. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry. The book aims to find a balance between theory and applications and will contribute to filling the gap between texts that either only study the abstract theory, or focus on some special equations.
MoreTable of Contents:
Linearization.- Fixed-Point Theorems.- Degree Theory and Applications.- Minimization Methods.- Topological and Variational Methods.
More