Machine Learning Technologies on Energy Economics and Finance
Energy and Sustainable Analytics, Volume 2
Series: International Series in Operations Research & Management Science; 368;
- Publisher's listprice EUR 192.59
-
79 876 Ft (76 073 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 15 975 Ft off)
- Discounted price 63 901 Ft (60 858 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
79 876 Ft
Availability
printed on demand
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Springer Nature Switzerland
- Date of Publication 7 August 2025
- Number of Volumes 1 pieces, Book
- ISBN 9783031950988
- Binding Hardback
- No. of pages332 pages
- Size 235x155 mm
- Language English
- Illustrations X, 332 p. 154 illus., 150 illus. in color. Illustrations, black & white 685
Categories
Long description:
"
This book explores the latest innovations in energy economics and finance, with a particular focus on the role of machine learning algorithms in advancing the energy sector. It examines key factors shaping this field, including market structures, regulatory frameworks, environmental impacts, and the dynamics of the global energy market. It discusses the critical application of machine learning (ML) in energy financing, introducing predictive tools for forecasting energy prices across various sectors—such as crude oil, electricity, fuelwood, solar, and natural gas. It also addresses how ML can predict investor behavior and assess the efficiency of energy markets, with a focus on both the opportunities and challenges in renewable energy and energy finance.
This book serves as a comprehensive guide for academics, practitioners, financial managers, stakeholders, government officials, and policymakers who seek strategies to enhance energy systems, reduce costs and uncertainties, and optimize revenue for economic growth. This is the second volume of a two-volume set.
" MoreTable of Contents:
"
Green Driving: Harnessing Machine Learning to Predict Vehicle Carbon Footprints and Interpreting Results with Explainable AI.- A Comparative Evaluation of Deep Neural Networks for Electricity Price Forecasting.- Energy Forecasting Utilizing CNN-LSTM Attention Mechanism: Empirical Evidence from the Spanish Electricity Market.- Feature Selection and Explainable AI For Transparent Windmill Power Forecasting.- Improving the Analysis of CO2 Emissions with a Filter and Imputation-Based Processing Method.- A Study on the Efficacy of Machine Learning and Ensemble Learning in Wind Power Generation Analysis.- Predicting Solar Radiation: A Fusion Approach with CatBoost and Random Forest Ensemble Enhanced by Explainable AI.- Modeling Nuclear Fusion Reaction Occurrence with Advanced Deep Learning Techniques: Insights from LIME and SMOTE.- A Critical Study on LSTM AND TRANSFORMER Models for Financial Analysis and Forecasting.- Exploring Feature Selection Techniques in Predicting Indian Household Electricity Consumption.- Constructing Women Empowerment Indices-based on Kernel PCA and Evaluating Its Determinants: Evidence from BDHS.- An Ensemble Machine Learning Approach to Predicting CO2 Emission Rates: Evidence from Denmark's Energy Data Service.- Smart Grid Stability Analysis with Interpretable Machine Learning and Deep Learning Models.- Weather as a Critical Component in Investment Strategies: Insights for Stakeholders.
" More
Endangered Languages of the Caucasus and Beyond
49 770 HUF
45 788 HUF