Homotopy Theory of Higher Categories
From Segal Categories to n-Categories and Beyond
Series: New Mathematical Monographs; 19;
- Publisher's listprice GBP 80.00
-
38 220 Ft (36 400 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 7 644 Ft off)
- Discounted price 30 576 Ft (29 120 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
38 220 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Cambridge University Press
- Date of Publication 20 October 2011
- ISBN 9780521516952
- Binding Hardback
- No. of pages652 pages
- Size 235x158x38 mm
- Weight 1050 g
- Language English
- Illustrations 35 b/w illus. 0
Categories
Short description:
Develops a full set of homotopical algebra techniques dedicated to the study of higher categories.
MoreLong description:
The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.
MoreTable of Contents:
Prologue; Acknowledgements; Part I. Higher Categories: 1. History and motivation; 2. Strict n-categories; 3. Fundamental elements of n-categories; 4. The need for weak composition; 5. Simplicial approaches; 6. Operadic approaches; 7. Weak enrichment over a Cartesian model category: an introduction; Part II. Categorical Preliminaries: 8. Some category theory; 9. Model categories; 10. Cartesian model categories; 11. Direct left Bousfield localization; Part III. Generators and Relations: 12. Precategories; 13. Algebraic theories in model categories; 14. Weak equivalences; 15. Cofibrations; 16. Calculus of generators and relations; 17. Generators and relations for Segal categories; Part IV. The Model Structure: 18. Sequentially free precategories; 19. Products; 20. Intervals; 21. The model category of M-enriched precategories; 22. Iterated higher categories; Part V. Higher Category Theory: 23. Higher categorical techniques; 24. Limits of weak enriched categories; 25. Stabilization; Epilogue; References; Index.
More
Homotopy Theory of Higher Categories: From Segal Categories to n-Categories and Beyond