• Contact

  • Newsletter

  • About us

  • Delivery options

  • Prospero Book Market Podcast

  • Biochar-Based Nanocomposites for Contaminant Management: Synthesis, Contaminants Removal, and Environmental Sustainability

    Biochar-Based Nanocomposites for Contaminant Management by Mishra, Disha; Singh, Rishikesh; Khare, Puja;

    Synthesis, Contaminants Removal, and Environmental Sustainability

    Series: Advances in Science, Technology & Innovation;

      • GET 20% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice EUR 181.89
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        75 438 Ft (71 846 Ft + 5% VAT)
      • Discount 20% (cc. 15 088 Ft off)
      • Discounted price 60 351 Ft (57 477 Ft + 5% VAT)

    75 438 Ft

    db

    Availability

    printed on demand

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Product details:

    • Edition number 2023
    • Publisher Springer International Publishing
    • Date of Publication 19 July 2024
    • Number of Volumes 1 pieces, Book

    • ISBN 9783031288753
    • Binding Paperback
    • See also 9783031288722
    • No. of pages143 pages
    • Size 279x210 mm
    • Language English
    • Illustrations X, 143 p. 29 illus., 24 illus. in color. Illustrations, black & white
    • 580

    Categories

    Long description:

    This book helps the readers get a holistic understanding of the emergence of biochar-nanocomposite research. The low and long-term exposure of persistent hazardous pollutants in environment is well known for damaging the water, soil, sediments, and living biota. Thus, it is a crucial step to eliminate these pollutants from environment regimes to prevent the on-site destruction or the transfer into the food chain. Biochar is a carbon-rich solid material generated through pyrolysis of biomass, and currently, it is covering the hotspot in environmental management of pollutants. It is being utilized for the efficient immobilization and sorption of organic pollutants, heavy metals, dyes, improvement of soil redox conditions, aggregate stabilization, photocatalytic degradation, and for carbon sequestration. The fascinating properties like surface area, porous structures, functional groups, and mineral components turn it into suitable candidate for the removal of various class of pollutants from environmental matrices. Different reactions like sorption, reduction, precipitation, solidification, and degradation are mainly responsible for the effective cleaning of xenobiotics from environment through biochar application. However, rapidly evolving contaminants in the environment have made the remediation more complex, expensive, and challenging. In view of these aspects, the modification of biochar through the doping of nanometals/metal oxides/surfactants/ or chemical entities will result in modified biochar with high surface area, more functional entities, improved physical, chemical, thermal, and mechanical characteristics with more adsorptive sites. Inclusion of these exclusive properties can be done through magnetic modification, impregnation of nanometals/ metal oxides/surfactants, amination, acid/base reactions, steam activation, etc. The resulted biochar-based nanocomposites have demonstrated a vital role in remediation of persistent organic pollutants, radionuclei, and heavy metals through the various interaction mechanisms like surface complexation, π–π interaction, electrostatic interaction, hydrogen bonding, Fenton process, and photocatalytic degradation. Currently, advanced research work has been carried out for the designing of modified composites of biochar to achieve maximum removal efficiency, reusability, biotoxicity, and sustainability. Hence, for selective removal of pollutants through designed biochar surface with the focused experimentation toward optimization of feedstocks, process variables, appropriate impregnation of nanomaterials, interaction with secondary pollutants, physical environment, longevity, and regeneration will definitely pave the way for safe and commercial application of biochar-based nanocomposites.

    More

    Table of Contents:

    Part 1 - Biochar-based nanocomposites: An Introduction.- 1 - Biochar-based nanocomposite materials: Types, characteristics, physical activation, and diverse application scenarios.- Part 2. Synthesis of biochar-based heterostructures/composites and their characteristics.- 2. Physical activation and nano-scale transformation of biochar using different mechano-chemical techniques.- 3. Biochar-based hydrogel nanocomposites: An innovative technique for contaminant-free environment.- 4. Production of biochar-based nanocomposites from chemical and biological methods.- 5. Comparative investigation of biochar-based nanocomposites over pristine biochar: An overview.- Part 3 - Application of biochar-based nanocomposites for remediation of emerging contaminants from the environment.- 6. Biochar-based nanocomposites for separation of inorganic contaminants from the environment.- 7. Biochar-based nano-composites for the removal of organic environmental contaminants.- 8. Role of biochar supportednano-photocatalysts for removal of dyes.- 9. Consideration about regeneration, reactivity, toxicity, and challenges of biochar-nanocomposites.- 10. Engineered biochar-based nano-composites: A sustainable solution for smart agriculture.- 11. Applications and future perspectives of agricultural waste biochar and its nanocomposites.

    More