• Contact

  • Newsletter

  • About us

  • Delivery options

  • Prospero Book Market Podcast

  • AI Technologies for Crop Breeding

    AI Technologies for Crop Breeding by Chen, Jen-Tsung;

      • GET 20% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice EUR 140.99
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        58 475 Ft (55 691 Ft + 5% VAT)
      • Discount 20% (cc. 11 695 Ft off)
      • Discounted price 46 780 Ft (44 553 Ft + 5% VAT)

    58 475 Ft

    db

    Availability

    printed on demand

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Long description:

    AI Technologies for Crop Breeding offers the latest insights into the use of artificial intelligence models to improve plant health and production. Presenting applications of AI technologies in plant biology, biotechnology, and crop breeding, it explores practices for the mitigation of biotic and abiotic stressors as well as other plant growth challenges.

    AI-based technologies are expected to advance approaches to plant functional genomics and multiple omics, resulting in smarter and more efficient crop breeding for next-generation agriculture helping to address the challenges of the increasing human population and the globally changing climate. AI tools such as machine learning, particularly deep learning, have been applied to predict chief players in complicated biological networks, increasing the understanding of in-depth mechanisms of plant-pathogen and plant-environment interactions. Additionally, responses of plants facing stress can be modeled using AI technologies, and the resulting data are valuable not only to plant stress physiology but also for stress-resilient and disease-resistant crop breeding.

    This book introduces AI technologies for studying plant biology, focusing on machine learning and deep learning models for integrating multiple omics approaches and revealing the knowledge of plant functional genomes. Technological advancements and emerging applications of machine learning and deep learning in genomic selection, genome-wide association study (GWAS), phenotyping and constructing phenomics, and transcriptomics are also featured in this book.

    AI Technologies for Crop Breeding is an ideal reference for researchers, academics, and advanced-level students and professors in the fields of plant sciences, plant stress physiology, bioinformatics, systems biology, and crop breeding.


    • Reviews AI-based technologies in crop plant functional genomics
    • Presents integration of AI tools with high-throughput omics
    • Advances understanding of the potential impact of AI technologies in addressing the UN Sustainable Development Goals

    More

    Table of Contents:

    1. Advances in artificial intelligence for plant biology and crop breeding: An overview
    2. Technical development and current applications of artificial intelligence and machine learning in plant functional genomics
    3. Next-generation smart crop breeding based on integrated artificial intelligence models and multiple omics: Methods and applications
    4. The role of artificial intelligence in organizing climate-resilient and smart agriculture
    5. Machine learning-assisted genome-wide association study (GWAS) in plants
    6. Integrated multiple omics and artificial intelligence for plant phenotyping and phenomics
    7. Deep generative models for studying and integrating plant multiple omics
    8. Deep learning, generative artificial intelligence and synthetic biology for crop breeding
    9. Exploration of plant single-cell genomics assisted by artificial intelligence technologies: Updated protocols and applications
    10. Artificial intelligence models for plant genomic selection
    11. Artificial intelligence for unrevealing plant stress regulating networks and responses
    12. Hub gene prediction by machine learning for regulating plant stress responses
    13. Machine learning for uncovering plant-pathogen interactions
    14. Machine learning for advancing plant high-throughput technologies
    15. Artificial intelligence models for meta-analyzing plant transcriptomic
    16. Integrating artificial intelligence technologies with plant systems biology
    17. Applications of artificial intelligence in plant genomics, genome editing and biotechnology
    18. Artificial intelligence, automation and the Internet of Things for smart agriculture: Updated methods and current applications
    19. Limitations and future perspective of artificial intelligence in crop breeding and agriculture

    More
    Recently viewed
    previous
    20% %discount
    AI Technologies for Crop Breeding

    AI Technologies for Crop Breeding

    Chen, Jen-Tsung; (ed.)

    58 475 HUF

    46 780 HUF

    AI Technologies for Crop Breeding

    The DICE Approach – Guiding the Caregiver in Managing the Behavioral Symptoms of Dementia

    Kales Md, Helen C.; Gitlin Phd, Laura N.; Lyketsos Md Mhs, Constantine G.;

    11 919 HUF

    10 728 HUF

    AI Technologies for Crop Breeding

    Re-/Dissolving Mimesis

    Althoff, Sebastian; Linseisen, Elisa; Müller, Maja-Lisa;(ed.)

    20 696 HUF

    20% %discount
    AI Technologies for Crop Breeding

    Invisible Borders in a Bordered World: Power, Mobility, and Belonging

    Diener, Alexander C.; Hagen, Joshua; (ed.)

    69 273 HUF

    55 419 HUF

    next