The South China Sea

Paleoceanography and Sedimentology
 
Kiadás sorszáma: 2009
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 160.49
Becsült forint ár:
66 226 Ft (63 072 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

52 980 (50 458 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 13 245 Ft)
A kedvezmény érvényes eddig: 2024. június 30.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This book is the first synthesis of sedimentary geology and paleoceanography of the South China Sea on the basis of extensive industrial explorations and scientific expeditions culminated with the ODP Leg 184. It provides up-to-date knowledge about the history of this largest marginal sea in the West Pacific, deep-sea records of evolution and variations of the East Asian monsoon, and geological backgrounds of the off-shore petroleum basins. With its focus on paleoceanography and sedimentology, this volume provides a comprehensive all-round view of the marginal sea basin, from modern oceanography to sequence stratigraphy.


The South China Sea: Paleoceanography and Sedimentology is essential reading for advanced students and researchers working in marine geology, basin evolution, sedimentology, paleoceanography and related fields.

Hosszú leírás:
Pinxian Wang and Qianyu Li The South China Sea (SCS) (Fig. 1. 1) offers a special attraction for Earth scientists world-wide because of its location and its well-preserved hemipelagic sediments. As the largest one of the marginal seas separating Asia from the Paci?c, the largest continent from the largest ocean, the SCS functions as a focal point in land-sea int- actions of the Earth system. Climatically, the SCS is located between the Western Paci?c Warm Pool, the centre of global heating at the sea level, and the Tibetan Plateau, the centre of heating at an altitude of 5,000m. Geomorphologically, the SCS lies to the east of the highest peak on earth, Zhumulangma or Everest in the Himalayas (8,848m elevation) and to the west of the deepest trench in the ocean, Philippine Trench (10,497m water depth) (Wang P. 2004). Biogeographically, the SCS belongs to the so-called ?East Indies Triangle? where modern marine and terrestrial biodiversity reaches a global maximum (Briggs 1999). Among the major marginal sea basins from the west Paci?c, the SCS presents some of the best conditions for accumulating complete paleoclimatic records in its hemipelagic deposits. These records are favorable for high-resolution pa- oceanographic studies because of high sedimentation rates and good carbonate preservation. It may not be merely a coincidence that two cores from the southern 14 SCS were among the ?rst several cores in the world ocean used by AMS C dating for high-resolution stratigraphy (Andree et al. 1986; Broecker et al. 1988).

Pinxian Wang and Qianyu Li The South China Sea (SCS) (Fig. 1. 1) offers a special attraction for Earth scientists world-wide because of its location and its well-preserved hemipelagic sediments. As the largest one of the marginal seas separating Asia from the Paci?c, the largest continent from the largest ocean, the SCS functions as a focal point in land-sea int- actions of the Earth system. Climatically, the SCS is located between the Western Paci?c Warm Pool, the centre of global heating at the sea level, and the Tibetan Plateau, the centre of heating at an altitude of 5,000m. Geomorphologically, the SCS lies to the east of the highest peak on earth, Zhumulangma or Everest in the Himalayas (8,848m elevation) and to the west of the deepest trench in the ocean, Philippine Trench (10,497m water depth) (Wang P. 2004). Biogeographically, the SCS belongs to the so-called ?East Indies Triangle? where modern marine and terrestrial biodiversity reaches a global maximum (Briggs 1999). Among the major marginal sea basins from the west Paci?c, the SCS presents some of the best conditions for accumulating complete paleoclimatic records in its hemipelagic deposits. These records are favorable for high-resolution pa- oceanographic studies because of high sedimentation rates and good carbonate preservation. It may not be merely a coincidence that two cores from the southern 14 SCS were among the ?rst several cores in the world ocean used by AMS C dating for high-resolution stratigraphy (Andree et al. 1986; Broecker et al. 1988).

Pinxian Wang and Qianyu Li The South China Sea (SCS) (Fig. 1. 1) offers a special attraction for Earth scientists world-wide because of its location and its well-preserved hemipelagic sediments. As the largest one of the marginal seas separating Asia from the Paci?c, the largest continent from the largest ocean, the SCS functions as a focal point in land-sea int- actions of the Earth system. Climatically, the SCS is located between the Western Paci?c Warm Pool, the centre of global heating at the sea level, and the Tibetan Plateau, the centre of heating at an altitude of 5,000m. Geomorphologically, the SCS lies to the east of the highest peak on earth, Zhumulangma or Everest in the Himalayas (8,848m elevation) and to the west of the deepest trench in the ocean, Philippine Trench (10,497m water depth) (Wang P. 2004). Biogeographically, the SCS belongs to the so-called ?East Indies Triangle? where modern marine and terrestrial biodiversity reaches a global maximum (Briggs 1999). Among the major marginal sea basins from the west Paci?c, the SCS presents some of the best conditions for accumulating complete paleoclimatic records in its hemipelagic deposits. These records are favorable for high-resolution pa- oceanographic studies because of high sedimentation rates and good carbonate preservation. It may not be merely a coincidence that two cores from the southern 14 SCS were among the ?rst several cores in the world ocean used by AMS C dating for high-resolution stratigraphy (Andree et al. 1986; Broecker et al. 1988).
Tartalomjegyzék:
1. INTRODUCTION: PINXIAN WANG and QIANYU LI 2. OCEANOGRAPHICAL AND GEOLOGICAL BACKGROUND: PINXIAN WANG and QIANYU LI Bathymetry and geomorphology Oceanography Tectonic history and sedimentary basins 3. STRATIGRAPHY AND SEA LEVEL CHANGES: QIANYU LI, GUANGFA ZHONG and JUN TIAN Lithostratigraphic overview Biostratigraphic framework Isotopic and astronomical stratigraphy Stratigraphy of major shelf and slope basins Regional sea level changes Summary of South China Sea stratigraphy 4. SEDIMENTOLOGY: Zhifei Liu , Wei Huang , JIANRU LI , Pinxian wang, Rujian Wang, Kefu Yu, Jianxin Zhao Surface deposition patterns Terrigenous deposition Biogenic deposition Coral reefs Volcanic deposition Estimation of deposit mass since the Oligocene 5. UPPER WATER STRUCTURE AND PALEO-MONSOON: ZHIMIN JIAN, JUN TIAN, XIANGJUN SUN, Sea surface temperature history Thermocline depth history Vegetation history in deep-sea record Monsoon history Summary 6. DEEP WATERS AND OCEANIC CONNECTION: QUANHONG ZHAO, QIANYU LI, ZHIMIN JIAN Modern deep waters and their faunal features Late Quaternary deep-water faunas and stable isotopes Neogene and Oligocene deep-water benthic faunas from ODP Leg 184 sites Deep water evolution: evidence from carbonate preservation and isotopes Oceanic connection Summary 7. BIOGEOCHEMISTRY AND THE CARBON RESERVOIR: MEIXUN ZHAO, PINXIAN WANG, JUN TIAN, JIANRU LI Productivity and nutrient dynamics in the modern South China Sea Paleoproductivity reconstrction of the South China Sea Carbon reservoir changes 8. HISTORY OF THE SOUTH CHINA SEA ? SYNTHESIS: PINXIAN WANG and QIANYU LI Evolution of the SCSBasin Evolution of the East Asian Monsoon Evolution of continent-ocean interactions