• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Supernova Cosmology for the 21st Century: How I Learnt to Stop Worrying About Likelihoods and Train a Neural Network

    Supernova Cosmology for the 21st Century by Karchev, Konstantin;

    How I Learnt to Stop Worrying About Likelihoods and Train a Neural Network

    Sorozatcím: Springer Theses;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 160.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        66 563 Ft (63 393 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 13 313 Ft off)
      • Kedvezményes ár 53 250 Ft (50 714 Ft + 5% áfa)
      • A kedvezmény érvényes eddig: 2025. december 31.

    66 563 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Springer Nature Switzerland
    • Megjelenés dátuma 2026. január 27.

    • ISBN 9783032150714
    • Kötéstípus Keménykötés
    • Terjedelem199 oldal
    • Méret 279x210 mm
    • Nyelv angol
    • Illusztrációk XII, 199 p. 50 illus., 44 illus. in color.
    • 700

    Kategóriák

    Hosszú leírás:

    This thesis breaks new ground in supernova type Ia cosmology, developing novel and powerful machine-learning methods scalable to the next generation of astronomical surveys. It demonstrates the feasibility of a fully simulation-based approach to inference, which overcomes the limitations of current methods while increasing the efficiency (and speed) of cosmological inference by orders of magnitude from upcoming large samples of objects. Combining advances in machine learning, numerical modelling, and physical insight, this work provides a much-needed bridge between cosmology and data science. On top of its exceptional methodological impact, the thesis itself is an outstanding product: it is written to the highest scientific and editorial standard, with exceptional quality of figures and graphs, and demonstrating superb command of statistics, machine learning, astrophysics, and cosmology. It is a precious resource for anybody interested in learning, in a concise and accessible yet rigorous manner, the state-of-the-art in supernova type Ia cosmology and modern inference methodologies in general.

    Több

    Tartalomjegyzék:

    Preface.- Bayesian inference.- Neural simulation-based inference.- Neural simulation-based model selection.- Developments in hierarchical SBI.- Supernova cosmology for philosophers.- Supernova cosmology for Nobel laureates. - Supernova cosmology for data scientists.- Supernova cosmology for statisticians.- Clipppy: probabilistic programming.- φυtorch: accelerating physics.- SLiCsim: light curves for the ML era.- SIDE-real.- SimSIMS.- SICRET.- RESSET.- CIGaRS.- Epilogue.- Appendices: Simulation-based hierarchical truncated inference.

    Több