
Probability Theory, An Analytic View
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 49.99
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 2 467 Ft off)
- Kedvezményes ár 22 203 Ft (21 146 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
24 670 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 3
- Kiadó Cambridge University Press
- Megjelenés dátuma 2024. november 21.
- ISBN 9781009549004
- Kötéstípus Puhakötés
- Terjedelem466 oldal
- Méret 254x177x25 mm
- Súly 850 g
- Nyelv angol 732
Kategóriák
Rövid leírás:
A rigorous, yet entertaining, account of the analytic foundations on which Kolmogorov built the theory of probability.
TöbbHosszú leírás:
The third edition of this highly regarded text provides a rigorous, yet entertaining, introduction to probability theory and the analytic ideas and tools on which the modern theory relies. The main changes are the inclusion of the Gaussian isoperimetric inequality plus many improvements and clarifications throughout the text. With more than 750 exercises, it is ideal for first-year graduate students with a good grasp of undergraduate probability theory and analysis. Starting with results about independent random variables, the author introduces weak convergence of measures and its application to the central limit theorem, and infinitely divisible laws and their associated stochastic processes. Conditional expectation and martingales follow before the context shifts to infinite dimensions, where Gaussian measures and weak convergence of measures are studied. The remainder is devoted to the mutually beneficial connection between probability theory and partial differential equations, culminating in an explanation of the relationship of Brownian motion to classical potential theory.
TöbbTartalomjegyzék:
Notation; 1. Sums of independent random variables; 2. The central limit theorem; 3. Infinitely divisible laws; 4. L&&&233;vy processes; 5. Conditioning and martingales; 6. Some extensions and applications of martingale theory; 7. Continuous parameter martingales; 8. Gaussian measures on a Banach space; 9. Convergence of measures on a Polish space; 10. Wiener measure and partial differential equations; 11. Some classical potential theory; References; Index.
Több