
Lectures on the Nearest Neighbor Method
Sorozatcím: Springer Series in the Data Sciences;
-
8% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 149.79
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 8% (cc. 5 083 Ft off)
- Discounted price 58 457 Ft (55 674 Ft + 5% áfa)
63 540 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma Softcover reprint of the original 1st ed. 2015
- Kiadó Springer
- Megjelenés dátuma 2019. március 21.
- Kötetek száma 1 pieces, Previously published in hardcover
- ISBN 9783319797823
- Kötéstípus Puhakötés
- Terjedelem290 oldal
- Méret 235x155 mm
- Súly 462 g
- Nyelv angol
- Illusztrációk 4 Illustrations, color 0
Kategóriák
Rövid leírás:
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
TöbbHosszú leírás:
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
?This book deals with different aspects regarding this approach, starting with the standard k-nearest neighbor model, and passing through the weighted k-nearest neighbor model, estimations for entropy, regression functions etc. ? It is intended for a large audience, including students, teachers, and researchers.? (Florin Gorunescu, zbMATH 1330.68001, 2016) Több
Tartalomjegyzék:
Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k-nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k-nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP-consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.
Több
Lectures on the Nearest Neighbor Method
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
63 540 Ft