Knowledge-Infused Learning
Neurosymbolic AI for Explainability, Interpretability, and Safety
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 60.00
-
28 665 Ft (27 300 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 5 733 Ft off)
- Kedvezményes ár 22 932 Ft (21 840 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
28 665 Ft
Beszerezhetőség
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Cambridge University Press
- Megjelenés dátuma 2026. január 31.
- ISBN 9781009513746
- Kötéstípus Keménykötés
- Terjedelem310 oldal
- Nyelv angol 700
Kategóriák
Rövid leírás:
Introduces an emerging field that blends statistical models with symbolic knowledge to make AI safer and more explainable.
TöbbHosszú leírás:
Knowledge-infused learning directly confronts the opacity of current 'black-box' AI models by combining data-driven machine learning techniques with the structured insights of symbolic AI. This guidebook introduces the pioneering techniques of neurosymbolic AI, which blends statistical models with symbolic knowledge to make AI safer and user-explainable. This is critical in high-stakes AI applications in healthcare, law, finance, and crisis management. The book brings readers up to speed on advancements in statistical AI, including transformer models such as BERT and GPT, and provides a comprehensive overview of weakly supervised, distantly supervised, and unsupervised learning methods alongside their knowledge-enhanced variants. Other topics include active learning, zero-shot learning, and model fusion. Beyond theory, the book presents practical considerations and applications of neurosymbolic AI in conversational systems, mental health, crisis management systems, and social and behavioral sciences, making it a pragmatic reference for AI system designers in academia and industry.
'Professor Amit Sheth is a leading expert in knowledge-fused learning. The topics covered by this book are important to advance state-of-the-art AI. As our understanding of generative AI deepens, we ask what the next frontiers of AI are. This timely book offers a refreshing answer that explores AI research beyond large language models.' Huan Liu, Arizona State University
Tartalomjegyzék:
1. Introduction; 2. Knowledge graphs for explainability and interpretability; 3. Knowledge-infused learning: the subsumer to neurosymbolic AI; 4. Shallow infusion of knowledge; 5. Semi-deep infusion learning; 6. Deep knowledge-infused learning; 7. Process knowledge-infused learning; 8. Knowledge-infused conversational NLP; 9. Neurosymbolic large language models; References; Index.
Több