• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Introduction to Singularities and Deformations

    Introduction to Singularities and Deformations by Greuel, Gert-Martin; Lossen, Christoph; Shustin, Eugenii I.;

    Sorozatcím: Springer Monographs in Mathematics;

      • 12% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 181.89
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        76 775 Ft (73 119 Ft + 5% áfa)
      • Kedvezmény(ek) 12% (cc. 9 213 Ft off)
      • Kedvezményes ár 67 562 Ft (64 345 Ft + 5% áfa)

    76 775 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2
    • Kiadó Springer Nature Switzerland
    • Megjelenés dátuma 2025. október 1.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783031860423
    • Kötéstípus Keménykötés
    • Terjedelem717 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk X, 717 p.
    • 700

    Kategóriák

    Hosszú leírás:

    "

    In the second edition we do not only correct errors, update references and improve some of the proofs of the text of the first edition, but also add a new chapter on singularities in arbitrary characteristic. We give an overview of several aspects of singularities of algebraic varieties and formal power series defined over a field of arbitrary characteristic (algebraically closed or not). Almost all of the results presented here appeared after the publication of the first edition and some results are new.

    In particular, we treat, in arbitrary characteristic, the classical invariants of hypersurface singularities, and we review results on the equisingularity of plane curve singularities, on the classification of parametrizations of plane branches, and on hypersurface and complete intersection singularities with small moduli. Moreover, we discuss and prove determinacy and semicontinuity results of families of ideals and matrices of power series parametrized by an arbitrary Noether base scheme, which are used to prove open loci properties for several singularity invariants. The semicontinuity has surprising applications in the computation of local standard bases of zero dimensional ideals, which are by magnitudes faster than previously known methods.

    The chapter contains two appendices. One is by Dmitry Kerner on large submodules within group orbits, which relates to determinacy criteria for singularities in very general contexts. It is focused on methods applicable to a broad class of fields of arbitrary characteristic, while before the theory was mainly restricted to zero characteristic. The second appendix is by Ilya Tyomkin and deals with the geometry of Severi varieties, mainly on toric varieties. It discusses the breakthrough solution to the problem on the irreducibility of Severi varieties of the plane in arbitrary characteristic, with a focus on the characteristic free approach based on tropical geometry.

    We try to be self-contained and give proofs whenever possible. However, due to the amount of material, this is not always possible, and we then give precise references to the original sources.

    This book presents the basic singularity theory of analytic spaces, including local deformation theory, and the theory of plane curve singularities. The authors develop the relevant techniques, including the Weierstraß preparation theorem, the finite coherence theorem, etc., and then discuss isolated hypersurface and plane curve singularities, including the finite determinacy, classification of simple singularities, topological and analytic invariants, and resolution. In the local deformation theory emphasis is placed on the issues of the versality, obstructions, and equisingular deformations. The book includes a thorough treatment of equisingular deformations of plane curve singularities including a proof for the smoothness of the mu-constant stratum based on deformations of the parametrization.

    "

    Több

    Tartalomjegyzék:

    1 Singularity Theory.- 2 Local Deformation Theory.- 3 Singularities in Arbitrary Characteristics.- Appendix A: Sheaves.- Appendix B: Commutative Algebra.- Appendix C: Formal Deformation Theory.

    Több