
Implementation Techniques
Sorozatcím: Neural Network Systems Techniques and Applications; 3;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 93.95
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 7 971 Ft off)
- Kedvezményes ár 31 882 Ft (30 364 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
39 853 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Academic Press
- Megjelenés dátuma 1998. február 9.
- ISBN 9780124438637
- Kötéstípus Keménykötés
- Terjedelem401 oldal
- Méret 228x152 mm
- Súly 750 g
- Nyelv angol 0
Kategóriák
Hosszú leírás:
This volume covers practical and effective implementation techniques, including recurrent methods, Boltzmann machines, constructive learning with methods for the reduction of complexity in neural network systems, modular systems, associative memory, neural network design based on the concept of the Inductive Logic Unit, and a comprehensive treatment of implementations in the area of data classification. Numerous examples enhance the text. Practitioners, researchers,and students in engineering and computer science will find Implementation Techniques a comprehensive and powerful reference.
TöbbTartalomjegyzék:
Bianchini, Frasconi, Gori, and Maggini, Optimal Learning in Artificial Neural Networks: A Theoretical View. Kanjilal, Orthogonal Transformation Techniques in the Optimization of Feedforward Neural Network Systems. Museli, Sequential Constructive Techniques. Yu, Xu, and Wang, Fast Backpropagation Training Using Optimal Learning Rate and Momentum. Angulo and Torras, Learning of Nonstationary Processes. Schaller, Constraint Satisfaction Problems. Yang and Chen, Dominant Neuron Techniques. Lin, Chiang, and Kim, CMAC-based Techniques for Adaptive Learning Control. Deco, Information Dynamics and Neural Techniques for Data Analysis. Gorinevsky, Radial Basis Function Network Approximation and Learning in Task-Dependent Feedforward Control of Nonlinear Dynamical Systems.
Több