• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Identifiability and Regression Analysis of Biological Systems Models: Statistical and Mathematical Foundations and R Scripts

    Identifiability and Regression Analysis of Biological Systems Models by Lecca, Paola;

    Statistical and Mathematical Foundations and R Scripts

    Sorozatcím: SpringerBriefs in Statistics;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 53.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        22 690 Ft (21 609 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 4 538 Ft off)
      • Discounted price 18 152 Ft (17 287 Ft + 5% áfa)

    Beszerezhetőség

    A kiadónál véglegesen elfogyott, nem rendelhető. Érdemes újra keresni a címmel, hátha van újabb kiadás.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2020
    • Kiadó Springer
    • Megjelenés dátuma 2020. március 6.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783030412548
    • Kötéstípus Puhakötés
    • Terjedelem82 oldal
    • Méret 235x155 mm
    • Súly 454 g
    • Nyelv angol
    • Illusztrációk 5 Illustrations, black & white; 8 Illustrations, color
    • 0

    Kategóriák

    Rövid leírás:

    This richly illustrated book presents the objectives of, and the latest techniques for, the identifiability analysis and standard and robust regression analysis of complex dynamical models. The book first provides a definition of complexity in dynamic systems by introducing readers to the concepts of system size, density of interactions, stiff dynamics, and hybrid nature of determination. In turn, it presents the mathematical foundations of and algorithmic procedures for model structural and practical identifiability analysis, multilinear and non-linear regression analysis, and best predictor selection.

    Although the main fields of application discussed in the book are biochemistry and systems biology, the methodologies described can also be employed in other disciplines such as physics and the environmental sciences. Readers will learn how to deal with problems such as determining the identifiability conditions, searching for an identifiable model, and conducting theirown regression analysis and diagnostics without supervision.

    Featuring a wealth of real-world examples, exercises, and codes in R, the book addresses the needs of doctoral students and researchers in bioinformatics, bioengineering, systems biology, biophysics, biochemistry, the environmental sciences and experimental physics. Readers should be familiar with the fundamentals of probability and statistics (as provided in first-year university courses) and a basic grasp of R.

    Több

    Hosszú leírás:

    This richly illustrated book presents the objectives of, and the latest techniques for, the identifiability analysis and standard and robust regression analysis of complex dynamical models. The book first provides a definition of complexity in dynamic systems by introducing readers to the concepts of system size, density of interactions, stiff dynamics, and hybrid nature of determination. In turn, it presents the mathematical foundations of and algorithmic procedures for model structural and practical identifiability analysis, multilinear and non-linear regression analysis, and best predictor selection.

    Although the main fields of application discussed in the book are biochemistry and systems biology, the methodologies described can also be employed in other disciplines such as physics and the environmental sciences. Readers will learn how to deal with problems such as determining the identifiability conditions, searching for an identifiable model, and conducting theirown regression analysis and diagnostics without supervision.

    Featuring a wealth of real-world examples, exercises, and codes in R, the book addresses the needs of doctoral students and researchers in bioinformatics, bioengineering, systems biology, biophysics, biochemistry, the environmental sciences and experimental physics. Readers should be familiar with the fundamentals of probability and statistics (as provided in first-year university courses) and a basic grasp of R.


    Több

    Tartalomjegyzék:

    1 Complex systems and sets of data.- 2 Dynamic models.- 3 Model identifiability.- 4 Relationships between phenomena.- 5 Codes.

    Több
    Mostanában megtekintett
    previous
    Identifiability and Regression Analysis of Biological Systems Models: Statistical and Mathematical Foundations and R Scripts

    Identifiability and Regression Analysis of Biological Systems Models: Statistical and Mathematical Foundations and R Scripts

    Lecca, Paola;

    22 690 Ft

    next
    0