• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Fractional Differential Equations: Numerical Methods for Applications

    Fractional Differential Equations: Numerical Methods for Applications by Harker, Matthew;

    Sorozatcím: Studies in Systems, Decision and Control; 258;

      • 12% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 128.39
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        53 249 Ft (50 714 Ft + 5% áfa)
      • Kedvezmény(ek) 12% (cc. 6 390 Ft off)
      • Kedvezményes ár 46 860 Ft (44 628 Ft + 5% áfa)

    53 249 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2024
    • Kiadó Springer Nature Switzerland
    • Megjelenés dátuma 2026. április 13.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783030323769
    • Kötéstípus Keménykötés
    • Terjedelem466 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk XVII, 466 p. 57 illus. Illustrations, black & white
    • 700

    Kategóriák

    Hosszú leírás:

    This book provides a comprehensive set of practical tools for exploring and discovering the world of fractional calculus and its applications, and thereby a means of bridging the theory of fractional differential equations (FDE) with real-world facts. These tools seamlessly blend centuries old numerical methods such as Gaussian quadrature that have stood the test of time with pioneering concepts such as hypermatrix equations to harness the emerging capabilities of modern scientific computing environments. This unique fusion of old and new leads to a unified approach that intuitively parallels the classic theory of differential equations, and results in methods that are unprecedented in computational speed and numerical accuracy.

    The opening chapter is an introduction to fractional calculus that is geared towards scientists and engineers. The following chapter introduces the reader to the key concepts of approximation theory with an emphasis on the tools of numerical linear algebra. The third chapter provides the keystone for the remainder of the book with a comprehensive set of methods for the approximation of fractional order integrals and derivatives. The fourth chapter describes the numerical solution of initial and boundary value problems for FDE of a single variable, both linear and nonlinear. Moving to two, three, and four dimensions, the ensuing chapter is devoted to a novel approach to the numerical solution of partial FDE that leverages the little-known one-to-one relation between partial differential equations and matrix and hypermatrix equations. The emphasis on applications culminates in the final chapter by addressing inverse problems for ordinary and partial FDE, such as smoothing for data analytics, and the all-important system identification problem.

    Over a century ago, scientists such as Ludwig Boltzmann and Vito Volterra formulated mathematical models of real materials that -- based on physical evidence -- integrated the history of the system. The present book will be invaluable to students and researchers in fields where analogous phenomena arise, such as viscoelasticity, rheology, polymer dynamics, non-Newtonian fluids, bioengineering, electrochemistry, non-conservative mechanics, groundwater hydrology, NMR and computed tomography, mathematical economics, thermomechanics, anomalous diffusion and transport, control theory, supercapacitors, and genetic algorithms, to name but a few. These investigators will be well-equipped with reproducible numerical methods to explore and discover their particular field of application of FDE.

    Presents novel methods for identifying parameters of fractional differential equations

    Focuses on high-accuracy methods for fractional differential equations (FDE) and partial fractional differential equations (PFDE)

    Includes methods based on matrix equations that are several orders of magnitude faster than finite element methods

    Több

    Tartalomjegyzék:

    Fractional Calculus and Fractional Differential Equations.- Essentials of Approximation Theory.- Numerical Approximation of Fractional Integrals and Derivatives.- Numerical Solution of Ordinary Fractional Differential Equations.- Numerical Solution of Partial Fractional Differential Equations.- Numerical Methods for Fractional Order Systems.- Reference Material.- Index.

    Több
    0