• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Evolutionary Multi-Task Optimization: Foundations and Methodologies

    Evolutionary Multi-Task Optimization by Feng, Liang; Gupta, Abhishek; Tan, Kay Chen;

    Foundations and Methodologies

    Sorozatcím: Machine Learning: Foundations, Methodologies, and Applications;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 181.89
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        77 157 Ft (73 483 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 6 173 Ft off)
      • Discounted price 70 985 Ft (67 604 Ft + 5% áfa)

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2023
    • Kiadó Springer
    • Megjelenés dátuma 2025. április 2.
    • Kötetek száma 1 pieces, Book

    • ISBN 9789811956522
    • Kötéstípus Puhakötés
    • Terjedelem219 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk 1 Illustrations, black & white
    • 700

    Kategóriák

    Rövid leírás:

    A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain?s ability to generalize in optimization ? particularly in population-based evolutionary algorithms ? have received little attention to date.  

    Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.  

    This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness. 

    Több

    Hosszú leírás:

    A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain?s ability to generalize in optimization ? particularly in population-based evolutionary algorithms ? have received little attention to date.  

    Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.  

    This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness. 

    Több

    Tartalomjegyzék:

    Chapter 1.Introduction.- Chapter 2. Overview and Application-driven Motivations of Evolutionary Multitasking.- Chapter 3.The Multi-factorial Evolutionary Algorithm.- Chapter 4. Multi-factorial Evolutionary Algorithm with Adaptive Knowledge Transfer.- Chapter 5.Explicit Evolutionary Multi-task Optimization Algorithm.- Chapter 6.Evolutionary Multi-task Optimization for Generalized Vehicle Routing Problem With Occasional Drivers.- Chapter 7. Explicit Evolutionary Multi-task Optimization for Capacitated Vehicle Routing Problem.- Chapter 8. Multi-Space Evolutionary Search for Large Scale Single-Objective Optimization.- Chapter 9.Multi-Space Evolutionary Search for Large-scale Multi-Objective Optimization.

    Több