Ethical Data Science
Prediction in the Public Interest
Sorozatcím: Oxford Technology Law and Policy;
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 27.49
-
13 133 Ft (12 507 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 1 313 Ft off)
- Kedvezményes ár 11 819 Ft (11 256 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
13 133 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó OUP USA
- Megjelenés dátuma 2024. január 23.
- ISBN 9780197693025
- Kötéstípus Keménykötés
- Terjedelem184 oldal
- Méret 221x160x30 mm
- Súly 408 g
- Nyelv angol 631
Kategóriák
Rövid leírás:
Amidst a growing movement to use science for positive change, Ethical Data Science offers a solution-oriented approach to the ethical challenges of data science. As one of the first books on public interest technology, it provides a starting point for anyone who wants human values to counterbalance the institutional incentives that drive computational prediction.
TöbbHosszú leírás:
Can data science truly serve the public interest? Data-driven analysis shapes many interpersonal, consumer, and cultural experiences yet scientific solutions to social problems routinely stumble. All too often, predictions remain solely a technocratic instrument that sets financial interests against service to humanity. Amidst a growing movement to use science for positive change, Anne L. Washington offers a solution-oriented approach to the ethical challenges of data science.
Ethical Data Science empowers those striving to create predictive data technologies that benefit more people. As one of the first books on public interest technology, it provides a starting point for anyone who wants human values to counterbalance the institutional incentives that drive computational prediction. It argues that data science prediction embeds administrative preferences that often ignore the disenfranchised. The book introduces the prediction supply chain to highlight moral questions alongside the interlocking legal and commercial interests influencing data science. Structured around a typical data science workflow, the book systematically outlines the potential for more nuanced approaches to transforming data into meaningful patterns. Drawing on arts and humanities methods, it encourages readers to think critically about the full human potential of data science step-by-step. Situating data science within multiple layers of effort exposes dependencies while also pinpointing opportunities for research ethics and policy interventions.
This approachable process lays the foundation for broader conversations with a wide range of audiences. Practitioners, academics, students, policy makers, and legislators can all learn how to identify social dynamics in data trends, reflect on ethical questions, and deliberate over solutions. The book proves the limits of predictive technology controlled by the few and calls for more inclusive data science.
Legal practitioners who specialise in data protection law, or who have responsibility for data protection training within their organisation, may find that the real-world case studies, and detailed reference sections, alone justify the relatively modest financial outlay required.
Tartalomjegyzék:
Introduction: Ethical data science
Prologue: Tracking ethics in a prediction supply chain
1: SOURCE - Data are people too
2: MODEL - Dear validity: Advice for wayward algorithms
3: COMPARE - Category hacking
4: OPTIMIZE - Data science reasoning
5: LEARN - For good
6: Show us your work or someone gets hurt
7: Prediction in the public interest
References
Index