• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Cancer Systems Biology: Translational Mathematical Oncology

    Cancer Systems Biology by Salgia, Ravi; Jolly, Mohit Kumar; Kulkarni, Prakash;

    Translational Mathematical Oncology

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 155.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        76 492 Ft (72 850 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 7 649 Ft off)
      • Kedvezményes ár 68 843 Ft (65 565 Ft + 5% áfa)

    76 492 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó OUP Oxford
    • Megjelenés dátuma 2025. szeptember 18.

    • ISBN 9780192867636
    • Kötéstípus Keménykötés
    • Terjedelem480 oldal
    • Méret 276x219 mm
    • Nyelv angol
    • 700

    Kategóriák

    Rövid leírás:

    Cancer Systems Biology provides state-of-the-art reviews and thought-provoking ideas in a concise and succinct manner. This insightful textbook is a crosspollination of concepts from multiple disciplines and experimental approaches to studying cancer.

    Több

    Hosszú leírás:

    Over the centuries, civilization has seen considerable advances in healthcare. Cancer is among the most challenging healthcare issues that we face today, but a number of discoveries have led to better care. Despite all the progress and the promise regarding early detection and precision medicine, we are still faced with the nettlesome problem - cancer is a moving target. Even within an individual tumour, deep sequencing analyses now indicate multiple, phenotypically distinct subpopulations, whose representation seems to vary dramatically from one stage to the next as the tumour progresses.

    Cancer Systems Biology provides state-of-the-art reviews and thought-provoking ideas in a concise and succinct manner. This insightful textbook is a crosspollination of concepts from multiple disciplines and experimental approaches to study cancer. The chapters provide new ideas and thoughts outlining how a quantitative picture of cancer can provide a deeper understanding of the disease, and how a systems level perspective may hold the key to fully comprehend how cancer arises and progresses.

    Written by experts in multiple disciplines, including systems biologists, science researchers, physicists, mathematicians, and clinicians, Cancer Systems Biology provides a comprehensive, up-to-date, treatise devoted to understanding cancer from a systems perspective. Providing new conceptual insights that can aid precision medicine, it will be essential reading for academic researchers in the field, clinicians, graduate students, and scientists with an interest in cancer biology.

    Több

    Tartalomjegyzék:

    Section 1 - Cancer systems biology: An overview
    The necessary existence of cancer and its progression from first principles of cell state dynamics
    Non- genetic intratumoral heterogeneity and phenotypic plasticity as consequences of microenvironment- driven epigenomic dysregulation
    Dimensions of cellular plasticity: Epithelial– mesenchymal transition, cancer stem cells, and collective cell migration
    Phenotypic switching in cancer: A systems- level perspective
    Morphological state transition during epithelial– mesenchymal transition
    Section 2 - Cancer systems biology: New paradigms
    Evolution- informed multilayer networks: Overlaying comparative evolutionary genomics with systems- level analyses for cancer drug discovery
    Landscape of cell- fate decisions in cancer cell plasticity
    The road to cancer and back: A thermodynamic point of view
    Cellular plasticity as emerging target against dynamic complexity in cancer
    Modeling phenotypic heterogeneity and cell- state transitions during cancer progression
    Section 3 - Single cell 'omics' analysis
    Decoding drug resistance at a single- cell level using systems- level approaches
    Computational methods to infer lineage decision- making in cancer using single-cell data
    Analyzing cancer cell- state transition dynamics through live- cell imaging and high- dimensional single-cell trajectory analyses
    Emerging single- cell technologies and concepts to trace cancer progression and drug resistance
    Section 4 - Computational approaches to drug development
    Navigating protein dynamics: Bridging the gap with deep learning and machine intelligence
    Cancer- related intrinsically disordered proteins: Functional insights from energy landscape analysis
    Targeting RAS
    Section 5 - Statistical methods and data mining, machine learning, artificial intelligence, and cloud computing
    The power of connection—enabling collaborative, multimodal data analysis at petabyte scale to advance understanding of oncology
    Interpretation of machine learning models in cancer: The role of model- agnostic explainable artificial intelligence
    Applying cloud computing and informatics in cancer
    Single-cell sequencing analysis focused on cancer immunotherapy
    Application of artificial intelligence to overcome clinical information overload in cancer
    Application of artificial intelligence in cancer genomics
    Section 6 - Biomechanics
    A role for mechanical heterogeneity in the tumor microenvironment in driving cancer cell invasion
    Adaptation of cancer cells to altered stiffness of the extra-cellular matrix
    Decoding mechano- oncology principles through microfluidic devices and biomaterial platforms
    Understanding contribution of fibroblasts in inception of cancer metastasis from an evolutionary perspective
    Cell competition in tumorigenesis and epithelial defense against cancer
    Section 7 - Translational mathematical oncology
    Modelling cell population dynamics during chimeric antigen receptor T- cell therapy
    Modeling small cell lung cancer biology through deterministic and stochastic mathematical models
    Mathematical models of resistance evolution under continuous and pulsed anti- cancer therapies
    Integrating in silico models with ex vivo data for designing better combinatorial therapies in cancer
    Tumour- immune co- evolution dynamics and it's impact on immuno- therapy optimization
    Mechanistic modelling and machine learning to establish structure– activity relationship of nanomaterials for improved tumour delivery
    Section 8 - Ecology, evolution, and cancer
    Decoding cancer evolution through adaptive fitness landscapes
    A case against causal reductionism in acquired therapy resistance
    Group behaviour and drug resistance in cancer
    The Fundamentals of evolutionary therapy in cancer
    Section 9 - Critical transitions and chaos in cancer
    Methods for identifying critical transitions during cancer progression
    Chaos and complexity: Hallmarks of cancer progression
    Cancer formation as creation and penetration of unknown life spaces

    Több