Between the Spreadsheets
Classifying and Fixing Dirty Data
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 36.99
-
17 671 Ft (16 830 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 1 767 Ft off)
- Kedvezményes ár 15 904 Ft (15 147 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
17 671 Ft
Beszerezhetőség
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma Second Edition, New edition
- Kiadó Facet Publishing
- Megjelenés dátuma 2025. október 2.
- ISBN 9781783307845
- Kötéstípus Puhakötés
- Terjedelem216 oldal
- Méret 234x156x4 mm
- Súly 454 g
- Nyelv angol 700
Kategóriák
Rövid leírás:
Everyone talks about data quality issues, but not the consequences. From the top to the bottom of an organisation, everyone should understand the impact of dirty data and how to spot it. Being an entirely revised new edition, this book will show you how.
TöbbHosszú leírás:
‘Clear, concise, engaging and entertaining. Highly recommended for anyone involved with data in any capacity.' Information Professional
Dirty data is a problem that costs businesses thousands, if not millions, every year. And with the increasing use of AI and Generative AI, it’s only getting worse. In organisations large and small across the globe you will hear talk of data quality issues. What you will rarely hear about is the consequences or best practices on how to fix it.
Fully revised and updated throughout, this new edition of Between the Spreadsheets draws on classification expert Susan Walsh’s years of hands-on experience in data to present a fool-proof method for cleaning and classifying your data. The book covers everything from the very basics of data classification to normalisation and taxonomies, and presents the author’s proven COAT framework, helping ensure an organisation’s data is Consistent, Organised, Accurate and Trustworthy. A series of data horror stories outlines what can go wrong in managing data, and if it does, how it can be fixed as well as new advice on using GenAI and why it is so important to have clean data before using it.
After reading this book, regardless of your level of experience, not only will you be able to work with your data more efficiently, but you will also understand the impact the work you do with it has, and how it affects the rest of the organisation. Written in an engaging and highly practical manner, Between the Spreadsheets, 2nd Edition gives readers of all levels a deep understanding of the dangers of dirty data and the confidence and skills to work more efficiently and effectively with it.
The second edition of Between the Spreadsheets seamlessly expands a world in which author Susan Walsh is showing us not only the uncomfortable truth around dirty data, but also approaches and methods on how to get rid of dirty data in an effective and sustainable way. The new chapter on breaking myths around how GenAI can help with data cleaning is especially timely and enlightening, and the data horror stories are scary but also painfully reflective of data issues in today’s day and age. Susan’s writing style is wonderfully reflective of her fun and approachable personality, and I can only recommend anyone interested in creating and maintaining clean data to read this book!
TöbbTartalomjegyzék:
Introduction
- The Dangers of Dirty Data
- Supplier Normalisation
- Taxonomies
- Spend Data Classification
- Basic Data Cleansing
- Before and After: Real-Life Data Cleaning Case Studies
- The Myth Exposed: Data Cleaning and GenAI
- Other Methodologies
- The Dirty Data Maturity Model
- Data Horror Stories
Summary
Több