
Artificial Intelligence and Deep Learning for Computer Network
GBP 99.99
Kattintson ide a feliratkozáshoz
A Prosperónál jelenleg nincsen raktáron.
ISBN13: | 9781032079592 |
ISBN10: | 1032079592 |
Kötéstípus: | Keménykötés |
Terjedelem: | 136 oldal |
Méret: | 234x156 mm |
Súly: | 412 g |
Nyelv: | angol |
Illusztrációk: | 60 Illustrations, black & white; 46 Halftones, black & white; 14 Line drawings, black & white; 21 Tables, black & white |
682 |
Villamosmérnöki tudományok, híradástechnika, műszeripar
Energetika, energiaipar
A számítástudomány elmélete, a számítástechnika általában
Számítógép architektúrák, logikai tervezés
Operációs rendszerek és grafikus felhasználói felületek
Szoftverfejlesztés
Számítógépes hálózatok általában
A számítástechnika biztonsági és egészségügyi vonatkozásai
Környezetmérnöki tudományok
Média- és információipar
This reference text aims to systematically collect quality research spanning AI, ML and Deep Learning (DL) applications to diverse sub-topics of computer networks, communications, and security, under a single cover. It also aspires to provide more insights on the applicability of the theoretical similitudes.
Artificial Intelligence and Deep Learning for Computer Network: Management and Analysis aims to systematically collect quality research spanning AI, ML, and deep learning (DL) applications to diverse sub-topics of computer networks, communications, and security, under a single cover. It also aspires to provide more insights on the applicability of the theoretical similitudes, otherwise a rarity in many such books.
Features:
- A diverse collection of important and cutting-edge topics covered in a single volume.
- Several chapters on cybersecurity, an extremely active research area.
- Recent research results from leading researchers and some pointers to future advancements in methodology.
- Detailed experimental results obtained from standard data sets.
This book serves as a valuable reference book for students, researchers, and practitioners who wish to study and get acquainted with the application of cutting-edge AI, ML, and DL techniques to network management and cyber security.
1. Deep Learning in traffic management: Deep traffic analysis of secure DNS. 2. Machine Learning based Approach for Detecting Beacon Forgeries in Wi
-Fi Networks. 3. Reinforcement learning
-based approach towards switch migration for load balancing in SDN. 4. Green Corridor over a Narrow Lane: Supporting High Priority Message Delivery through NB
-IoT. 5. Vulnerabilities Detection in Cyber Security using Deep Learning based Information Security and Event Management. 6. Detection and Localization of Double Compressed Forged Regions in JPEG Images using DCT Coefficients and Deep Learning based CNN.?