
Applied Meta-Analysis with R and Stata
Sorozatcím: Chapman & Hall/CRC Biostatistics Series;
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 130.00
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 6 579 Ft off)
- Discounted price 59 214 Ft (56 394 Ft + 5% áfa)
65 793 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 2, New edition
- Kiadó Chapman and Hall
- Megjelenés dátuma 2021. március 31.
- ISBN 9780367183837
- Kötéstípus Keménykötés
- Terjedelem456 oldal
- Méret 234x156 mm
- Súly 820 g
- Nyelv angol
- Illusztrációk 63 Illustrations, black & white; 23 Tables, black & white 830
Kategóriák
Rövid leírás:
In biostatistical research and courses, practitioners and students often lack a thorough understanding of how to apply statistical methods to synthesize biomedical and clinical trial data. Filling this knowledge gap, this book shows how to implement statistical meta-analysis methods to real data using R and Stata.
TöbbHosszú leírás:
Review of the First Edition:
The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis? A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.
?Journal of Applied Statistics
Statistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.
What?s New in the Second Edition:
- Adds Stata programs along with the R programs for meta-analysis
- Updates all the statistical meta-analyses with R/Stata programs
- Covers fixed-effects and random-effects MA, meta-regression, MA with rare-event, and MA-IPD vs MA-SS
- Adds five new chapters on multivariate MA, publication bias, missing data in MA, MA in evaluating diagnostic accuracy, and network MA
Suitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry.
"The strengths of the second edition continue those of the first edition... A summary and discussion close the chapters, providing professionally generous recommendations for additional reading, software, and websites. Clearly, an applied hands-on approach intended to facilitate quickly moving readers to performing informed meta-data analyses."
- Thomas E. Bradstreet, Journal of Biopharmaceutical Statistics, July 2022
Tartalomjegyzék:
1. Introduction to R and Stata for Meta-Analysis
2. Research Protocol for Meta-Analyses
3. Fixed-E ects and Random-E ects in Meta-Analysis
4. Meta-Analysis with Binary Data
5. Meta-Analysis for Continuous Data
6. Heterogeneity in Meta-Analysis
7. Meta-Regression
8. Multivariate Meta-Analysis
9. Publication Bias in Meta-Analysis
10. Strategies to Handle Missing Data in Meta-Analysis
11. Meta-Analysis for Evaluating Diagnostic Accuracy
12. Network Meta-Analysis
13. Meta-Analysis for Rare Events
14. Meta-Analyses with Individual Patient-Level Data versus Summary Statistics
15. Other R/Stata Packages for Meta-Analysis