• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Applied Meta-Analysis with R and Stata

    Applied Meta-Analysis with R and Stata by Chen, Ding-Geng (Din); Peace, Karl E.;

    Sorozatcím: Chapman & Hall/CRC Biostatistics Series;

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 130.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        65 793 Ft (62 660 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 6 579 Ft off)
      • Discounted price 59 214 Ft (56 394 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    In biostatistical research and courses, practitioners and students often lack a thorough understanding of how to apply statistical methods to synthesize biomedical and clinical trial data. Filling this knowledge gap, this book shows how to implement statistical meta-analysis methods to real data using R and Stata.

    Több

    Hosszú leírás:

    Review of the First Edition:


    The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis? A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.


    ?Journal of Applied Statistics


    Statistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.



    What?s New in the Second Edition:




    • Adds Stata programs along with the R programs for meta-analysis



    • Updates all the statistical meta-analyses with R/Stata programs



    • Covers fixed-effects and random-effects MA, meta-regression, MA with rare-event, and MA-IPD vs MA-SS



    • Adds five new chapters on multivariate MA, publication bias, missing data in MA, MA in evaluating diagnostic accuracy, and network MA



    Suitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry.



    "The strengths of the second edition continue those of the first edition... A summary and discussion close the chapters, providing professionally generous recommendations for additional reading, software, and websites. Clearly, an applied hands-on approach intended to facilitate quickly moving readers to performing informed meta-data analyses."
    - Thomas E. Bradstreet, Journal of Biopharmaceutical Statistics, July 2022

    Több

    Tartalomjegyzék:

    1. Introduction to R and Stata for Meta-Analysis
    2. Research Protocol for Meta-Analyses
    3. Fixed-E ects and Random-E ects in Meta-Analysis
    4. Meta-Analysis with Binary Data
    5. Meta-Analysis for Continuous Data
    6. Heterogeneity in Meta-Analysis
    7. Meta-Regression
    8. Multivariate Meta-Analysis
    9. Publication Bias in Meta-Analysis
    10. Strategies to Handle Missing Data in Meta-Analysis
    11. Meta-Analysis for Evaluating Diagnostic Accuracy
    12. Network Meta-Analysis
    13. Meta-Analysis for Rare Events
    14. Meta-Analyses with Individual Patient-Level Data versus Summary Statistics
    15. Other R/Stata Packages for Meta-Analysis

    Több