
Survey of Text Mining
Clustering, Classification, and Retrieval
- Publisher's listprice EUR 106.99
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 3 631 Ft off)
- Discounted price 41 753 Ft (39 765 Ft + 5% VAT)
45 385 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 2004
- Publisher Springer
- Date of Publication 9 September 2003
- Number of Volumes 1 pieces, Book
- ISBN 9780387955636
- Binding Hardback
- No. of pages244 pages
- Size 235x155 mm
- Weight 576 g
- Language English
- Illustrations 46 Illustrations, black & white 0
Categories
Short description:
As the volume of digitized textual information continues to grow, so does the critical need for designing robust and scalable indexing and search strategies/software to meet a variety of user needs. Knowledge extraction or creation from text requires systematic, yet reliable processing that can be codified and adapted for changing needs and environments.
Survey of Text Mining is a comprehensive edited survey organized into three parts: Clustering and Classification; Information Extraction and Retrieval; and Trend Detection. Many of the chapters stress the practical application of software and algorithms for current and future needs in text mining. Authors from industry provide their perspectives on current approaches for large-scale text mining and obstacles that will guide R&D activity in this area for the next decade.
Topics and features:
* Highlights issues such as scalability, robustness, and software tools
* Brings together recent research and techniques from academia and industry
* Examines algorithmic advances in discriminant analysis, spectral clustering, trend detection, and synonym extraction
* Includes case studies in mining Web and customer-support logs for hot- topic extraction and query characterizations
* Extensive bibliography of all references, including websites
This useful survey volume taps the expertise of academicians and industry professionals to recommend practical approaches to purifying, indexing, and mining textual information. Researchers, practitioners, and professionals involved in information retrieval, computational statistics, and data mining, who need the latest text-mining methods and algorithms, will find the book an indispensable resource.
MoreLong description:
Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory.
As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments.
This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
MoreTable of Contents:
I Clustering and Classification.- 1 Cluster-Preserving Dimension Reduction Methods for Efficient Classification of Text Data.- 2 Automatic Discovery of Similar Words.- 3 Simultaneous Clustering and Dynamic Keyword Weighting for Text Documents.- 4 Feature Selection and Document Clustering.- II Information Extraction and Retrieval.- 5 Vector Space Models for Search and Cluster Mining.- 6 HotMiner: Discovering Hot Topics from Dirty Text.- 7 Combining Families of Information Retrieval Algorithms Using Metalearning.- III Trend Detection.- 8 Trend and Behavior Detection from Web Queries.- 9 A Survey of Emerging Trend Detection in Textual Data Mining.
More