Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques
Series: International Series on Actuarial Science;
- Publisher's listprice GBP 71.00
-
33 920 Ft (32 305 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 6 784 Ft off)
- Discounted price 27 136 Ft (25 844 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
33 920 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Cambridge University Press
- Date of Publication 28 July 2014
- ISBN 9781107029873
- Binding Hardback
- No. of pages563 pages
- Size 255x179x37 mm
- Weight 1120 g
- Language English
- Illustrations 120 b/w illus. 94 tables 26 exercises 0
Categories
Short description:
This book is for actuaries and financial analysts developing their expertise in statistics and who wish to become familiar with concrete examples of predictive modeling.
MoreLong description:
Predictive modeling involves the use of data to forecast future events. It relies on capturing relationships between explanatory variables and the predicted variables from past occurrences and exploiting this to predict future outcomes. Forecasting future financial events is a core actuarial skill - actuaries routinely apply predictive-modeling techniques in insurance and other risk-management applications. This book is for actuaries and other financial analysts who are developing their expertise in statistics and wish to become familiar with concrete examples of predictive modeling. The book also addresses the needs of more seasoned practising analysts who would like an overview of advanced statistical topics that are particularly relevant in actuarial practice. Predictive Modeling Applications in Actuarial Science emphasizes lifelong learning by developing tools in an insurance context, providing the relevant actuarial applications, and introducing advanced statistical techniques that can be used by analysts to gain a competitive advantage in situations with complex data.
'With contributions coming from a wide variety of researchers, professors, and actuaries - including several CAS Fellows - it's clear that this book will be valuable for any P and C actuary whose main concern is using predictive modeling in his or her own work.' David Zornek, Actuarial Review
Table of Contents:
1. Predictive modeling in actuarial science Edward W. Frees and Richard A. Derrig; Part I. Predictive Modeling Foundations: 2. Overview of linear models Marjorie Rosenberg; 3. Regression with categorical dependent variables Montserrat Guillen; 4. Regression with count-dependent variables Jean-Philippe Boucher; 5. Generalized linear models Curtis Gary Dean; 6. Frequency and severity models Edward W. Frees; Part II. Predictive Modeling Methods: 7. Longitudinal and panel data models Edward W. Frees; 8. Linear mixed models Katrien Antonio and Yanwei Zhang; 9. Credibility and regression modeling Vytaras Brazauskas, Harald Dornheim and Ponmalar Ratnam; 10. Fat-tailed regression models Peng Shi; 11. Spatial modeling Eike Brechmann and Claudia Czado; 12. Unsupervised learning Louise Francis; Part III. Bayesian and Mixed Modeling: 13. Bayesian computational methods Brian Hartman; 14. Bayesian regression models Luis Nieto-Barajas and Enrique de Alba; 15. Generalized additive models and nonparametric regression Patrick L. Brockett, Shuo-Li Chuang and Utai Pitaktong; 16. Non-linear mixed models Katrien Antonio and Yanwei Zhang; Part IV. Longitudinal Modeling: 17. Time series analysis Piet de Jong; 18. Claims triangles/loss reserves Greg Taylor; 19. Survival models Jim Robinson; 20. Transition modeling Bruce Jones and Weijia Wu.
More
Scalable Processing of Spatial-Keyword Queries
31 521 HUF
28 999 HUF