Multiple Imputation of Missing Data in Practice
Basic Theory and Analysis Strategies
- Publisher's listprice GBP 56.99
-
27 226 Ft (25 930 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 5 445 Ft off)
- Discounted price 21 781 Ft (20 744 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
27 226 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1
- Publisher Chapman and Hall
- Date of Publication 27 May 2024
- ISBN 9781032136899
- Binding Paperback
- No. of pages494 pages
- Size 234x156 mm
- Weight 740 g
- Language English
- Illustrations 47 Illustrations, black & white; 47 Line drawings, black & white; 111 Tables, black & white 557
Categories
Short description:
Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis.
MoreLong description:
Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community.
Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book).
Key Features
- Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis
- Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.)
- Explores measurement error problems with multiple imputation
- Discusses analysis strategies for multiple imputation diagnostics
- Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems
- For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)
Table of Contents:
1. Introduction. 2. Statistical Background. 3. Multiple Imputation Analysis: Basics. 4. Multiple Imputation for Univariate Missing Data: Parametric Methods. 5. Multiple Imputation for Univariate Missing Data: Robust Methods. 6. Multiple Imputation for Multivariate Missing Data: the Joint Modeling Approach. 7. Multiple Imputation for Multivariate Missing Data: the Fully Conditional Specification Approach. 8. Multiple Imputation in Survival Data Analysis. 9. Multiple Imputation for Longitudinal Data. 10. Multiple Imputation Analysis for Complex Survey Data. 11. Multiple Imputation for Data Subject to Measurement Error. 12. Multiple Imputation Diagnostics.
More
Free software programmed in PHP
12 857 HUF
12 214 HUF