Methods of Nonsmooth Optimization in Stochastic Programming
From Conceptual Algorithms to Real-World Applications
Series: International Series in Operations Research & Management Science; 363;
- Publisher's listprice EUR 149.79
-
62 125 Ft (59 167 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 12 425 Ft off)
- Discounted price 49 700 Ft (47 334 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
62 125 Ft
Availability
printed on demand
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Springer Nature Switzerland
- Date of Publication 6 May 2025
- Number of Volumes 1 pieces, Book
- ISBN 9783031848360
- Binding Hardback
- No. of pages570 pages
- Size 235x155 mm
- Language English
- Illustrations XVI, 570 p. 39 illus., 30 illus. in color. Illustrations, black & white 659
Categories
Long description:
This book presents a comprehensive series of methods in nonsmooth optimization, with a particular focus on their application in stochastic programming and dedicated algorithms for decision-making under uncertainty. Each method is accompanied by rigorous mathematical analysis, ensuring a deep understanding of the underlying principles. The theoretical discussions included are essential for comprehending the mechanics of various algorithms and the nature of the solutions they provide—whether they are global, local, stationary, or critical. The book begins by introducing fundamental tools from set-valued analysis, optimization, and probability theory. It then transitions from deterministic to stochastic optimization, starting with a thorough discussion of modeling, understanding uncertainty, and incorporating it into optimization problems. Following this foundation, the book explores numerical algorithms for nonsmooth optimization, covering well-known decomposition techniques and algorithms for convex optimization, mixed-integer convex programming, and nonconvex optimization. Additionally, it introduces numerical algorithms specifically for stochastic programming, focusing on stochastic programming with recourse, chance-constrained optimization, and detailed algorithms for both risk-neutral and risk-averse multistage stochastic programs.
The book guides readers through the entire process, from defining optimization models for practical problems to presenting implementable algorithms that can be applied in practice. It is intended for students, practitioners, and scholars who may be unfamiliar with stochastic programming and nonsmooth optimization. The analyses provided are also valuable for practitioners who may not be interested in convergence proofs but wish to understand the nature of the solutions obtained.
MoreTable of Contents:
Introduction.- Primer of convex analysis.- Variational analysis.- Linear and nonlinear optimization problems.- Probability and Statistics.- Fundamental modeling questions in stochastic programming.- Adjusting to uncertainty: modeling recourse.- Probability constraints.- Proximal point algorithms for problems with structure.- Cutting-plane algorithms for nonsmooth convex optimization over simple domains.- Bundle methods for nonsmooth convex optimization over simple domains.- Methods for nonlinearly constrained nonsmooth optimization problems.- Methods for nonsmooth optimization with mixed-integer variables.- Methods for nonsmooth nonconvex optimization.- Two-stage stochastic programs.- Progressive decoupling in multistage stochastic programming.- Scenario decomposition with alternating projections.- Methods for multistage stochastic linear programs.- Methods for handling probability.
More
Machine Learning for Solar Array Monitoring, Optimization, and Control
20 322 HUF
18 697 HUF
Numerical Calculation for Physics Laboratory Projects Using Microsoft EXCEL?
38 157 HUF
35 104 HUF