Introduction to Singularities and Deformations
Series: Springer Monographs in Mathematics;
- Publisher's listprice EUR 128.39
-
53 249 Ft (50 714 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 12% (cc. 6 390 Ft off)
- Discounted price 46 860 Ft (44 628 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
53 249 Ft
Availability
Out of print
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 2007
- Publisher Springer Berlin Heidelberg
- Date of Publication 29 November 2006
- Number of Volumes 1 pieces, Book
- ISBN 9783540283805
- Binding Hardback
- No. of pages472 pages
- Size 235x155 mm
- Weight 1890 g
- Language English
- Illustrations XII, 472 p. 54 illus. Illustrations, black & white 0
Categories
Long description:
Singularity theory is a field of intensive study in modern mathematics with fascinating relations to algebraic geometry, complex analysis, commutative algebra, representation theory, theory of Lie groups, topology, dynamical systems, and many more, and with numerous applications in the natural and technical sciences.
This book presents the basic singularity theory of analytic spaces, including local deformation theory, and the theory of plane curve singularities. Plane curve singularities are a classical object of study, rich of ideas and applications, which still is in the center of current research and as such provides an ideal introduction to the general theory. Deformation theory is an important technique in many branches of contemporary algebraic geometry and complex analysis. This introductory text provides the general framework of the theory while still remaining concrete.
In the first part of the book the authors develop the relevant techniques, including the Weierstraß preparation theorem, the finite coherence theorem etc., and then treat isolated hypersurface singularities, notably the finite determinacy, classification of simple singularities and topological and analytic invariants. In local deformation theory, emphasis is laid on the issues of versality, obstructions, and equisingular deformations. The book moreover contains a new treatment of equisingular deformations of plane curve singularities including a proof for the smoothness of the mu-constant stratum which is based on deformations of the parameterization. Computational aspects of the theory are discussed as well. Three appendices, including basic facts from sheaf theory, commutative algebra, and formal deformation theory, make the reading self-contained.
The material, which can be found partly in other books and partly in research articles, is presented from a unified point of view for the first time. It is given with complete proofs, new in many cases. The book thuscan serve as source for special courses in singularity theory and local algebraic and analytic geometry.
This book presents the basic singularity theory of analytic spaces, including local deformation theory, and the theory of plane curve singularities. The authors develop the relevant techniques, including Weierstraß preparation theorem, the finite coherence theorem etc., and then discuss isolated hypersurface and plane curve singularities, including the finite determinacy, classification of simple singularities, topological and analytic invariants, resolution. In the local deformation theory emphasis is placed on the issues of the versality, obstructions, and equisingular deformations. The book includes a thorough treatment of equisingular deformations of plane curve singularities including a proof for the smoothness of the mu-constant stratum based on deformations of the parametrization.
MoreTable of Contents:
I. Singularity Theory. Basic Properties of Complex Spaces and Germs. Weierstrass Preparation and Finiteness Theorem. Application to Analytic Algebras. Complex Spaces. Complex Space Germs and Singularities. Finite Morphisms and Finite Coherence Theorem. Applications of the Finite Coherence Theorem. Finite Morphisms and Flatness. Flat Morphisms and Fibres. Singular Locus and Differential Forms. Hypersurface Singularities. Invariants of Hypersurface Singularities. Finite Determinacy. Algebraic Group Actions. Classification of Simple Singularities. Plane Curve Singularities. Parametrization. Intersection Multiplicity. Resolution of Plane Curve Singularities. Classical Topological and Analytic Invariants.- II. Local Deformation Theory. Deformations of Complex Space Germs. Deformations of Singularities. Embedded Deformations. Versal Deformations. Infinitesimal Deformations. Obstructions. Equisingular Deformations of Plane Curve Singularities.- Equisingular Deformations of the Equation. The Equisingularity Ideal. Deformations of the Parametrization. Computation of T^1 and T^2 . Equisingular Deformations of the Parametrization. Equinormalizable Deformations. Versal Equisingular Deformations.- Appendices: Sheaves. Commutative Algebra. Formal Deformation Theory. Literature.- Index.
More
Discrete and System Models: Volume 3: Discrete and System Models
35 481 HUF
32 643 HUF
Introduction to Singularities and Deformations
53 249 HUF
46 860 HUF
Development of the Central Nervous System in Vertebrates
66 339 HUF
61 032 HUF