GANs for Data Augmentation in Healthcare
- Publisher's listprice EUR 171.19
-
71 001 Ft (67 620 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 14 200 Ft off)
- Discounted price 56 801 Ft (54 096 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
71 001 Ft
Availability
printed on demand
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1st ed. 2023
- Publisher Springer International Publishing
- Date of Publication 14 November 2023
- Number of Volumes 1 pieces, Book
- ISBN 9783031432040
- Binding Hardback
- No. of pages251 pages
- Size 235x155 mm
- Weight 565 g
- Language English
- Illustrations X, 251 p. 120 illus., 87 illus. in color. Illustrations, black & white 512
Categories
Long description:
Computer-Assisted Diagnostics (CAD) using Convolutional Neural Network (CNN) model has become an important technology in the medical industry, improving the accuracy of diagnostics. However, the lack Magnetic Resonance Imaging (MRI) data leads to the failure of the depth study algorithm. Medical records are often different because of the cost of obtaining information and the time spent consuming the information. In general, clinical data is unreliable and therefore the training of neural network methods to distribute disease across classes does not yield the desired results. Data augmentation is often done by training data to solve problems caused by augmentation tasks such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue.
Data Augmentation and Segmentation imaging using GAN can be used to provide clear images of brain, liver, chest, abdomen, and liver on an MRI. In addition, GAN shows strong promise in the field of clinical image synthesis. In many cases, clinical evaluation is limited by a lack of data and/or the cost of actual information. GAN can overcome these problems by enabling scientists and clinicians to work on beautiful and realistic images. This can improve diagnosis, prognosis, and disease. Finally, GAN highlights the potential for location of patient information within the data. This is a beneficial clinical application of GAN because it can effectivelyprotect patient confidentiality. This book covers the application of GANs on medical imaging augmentation and segmentation.
More
Table of Contents:
Chapter. 1. Role of Machine learning in Detection and Classification of Leukemia: A Comparative Analysis.- Chapter. 2. A Review on Mode Collapse Reducing GANs with GAN’s Algorithm and Theory.- Chapter. 3. Medical Image Synthesis using Generative Adversarial Networks.- Chapter. 4. Chest X-ray data augmentation with Generative Adversarial Networks for pneumonia and COVID diagnosis.- Chapter. 5. State of the Art Framework based Detection of GAN Generated Face Images.- Chapter. 6. Data Augmentation in Classifying Chest Radiograph Images (CXR) using DCGAN-CNN.- Chapter. 7. Data Augmentation Approaches Using Cycle Consistent Adversarial Networks.- Chapter. 8. Geometric Transformations-based Medical Image Augmentation.- Chapter. 9. Generative Adversarial Learning for Medical Thermal Imaging Analysis.- Chapter. 10. Improving Performance of a Brain Tumor Detection on MRI Images using DCGAN-based Data Augmentation and Vision Transformer(ViT) Approach.- Chapter. 11. Combining Super-Resolution GAN and DC GAN for Enhancing Medical Image Generation: A Study on Improving CNN Model Performance.- Chapter. 12. GAN for Augmenting Cardiac MRI Segmentation.- Chapter. 13. WGAN for Data Augmentation.- Chapter. 14. Image Segmentation in Medical Images by Using Semi - Supervised Methods.
More