Galois Groups over ?
Proceedings of a Workshop Held March 23-27, 1987
Series: Mathematical Sciences Research Institute Publications; 16;
- Publisher's listprice EUR 85.55
-
35 481 Ft (33 792 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 2 838 Ft off)
- Discounted price 32 643 Ft (31 089 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
35 481 Ft
Availability
Out of print
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1989
- Publisher Springer Verlag
- Date of Publication 25 July 1989
- Number of Volumes 1 pieces Book
- ISBN 9780387970318
- Binding Hardback
- No. of pages449 pages
- Size 0x0 mm
- Weight 830 g
- Language English
- Illustrations 11 Illustrations, black & white 0
Categories
Long description:
This volume is the offspring of a week-long workshop on "Galois groups over Q and related topics," which was held at the Mathematical Sciences Research Institute during the week March 23-27, 1987. The organizing committee consisted of Kenneth Ribet (chairman), Yasutaka Ihara, and Jean-Pierre Serre. The conference focused on three principal themes: 1. Extensions of Q with finite simple Galois groups. 2. Galois actions on fundamental groups, nilpotent extensions of Q arising from Fermat curves, and the interplay between Gauss sums and cyclotomic units. 3. Representations of Gal(Q/Q) with values in GL(2)j deformations and connections with modular forms. Here is a summary of the conference program: ? G. Anderson: "Gauss sums, circular units and the simplex" ? G. Anderson and Y. Ihara: "Galois actions on 11"1 ( ??? ) and higher circular units" ? D. Blasius: "Maass forms and Galois representations" ? P. Deligne: "Galois action on 1I"1(P-{0, 1, oo}) and Hodge analogue" ? W. Feit: "Some Galois groups over number fields" ? Y. Ihara: "Arithmetic aspect of Galois actions on 1I"1(P - {O, 1, oo})" - survey talk ? U. Jannsen: "Galois cohomology of i-adic representations" ? B. Matzat: - "Rationality criteria for Galois extensions" - "How to construct polynomials with Galois group Mll over Q" ? B. Mazur: "Deforming GL(2) Galois representations" ? K. Ribet: "Lowering the level of modular representations of Gal( Q/ Q)" ? J-P. Serre: - Introductory Lecture - "Degree 2 modular representations of Gal(Q/Q)" ? J.
This volume is the offspring of a week-long workshop on "Galois groups over Q and related topics," which was held at the Mathematical Sciences Research Institute during the week March 23-27, 1987. The organizing committee consisted of Kenneth Ribet (chairman), Yasutaka Ihara, and Jean-Pierre Serre. The conference focused on three principal themes: 1. Extensions of Q with finite simple Galois groups. 2. Galois actions on fundamental groups, nilpotent extensions of Q arising from Fermat curves, and the interplay between Gauss sums and cyclotomic units. 3. Representations of Gal(Q/Q) with values in GL(2)j deformations and connections with modular forms. Here is a summary of the conference program: ? G. Anderson: "Gauss sums, circular units and the simplex" ? G. Anderson and Y. Ihara: "Galois actions on 11"1 ( ??? ) and higher circular units" ? D. Blasius: "Maass forms and Galois representations" ? P. Deligne: "Galois action on 1I"1(P-{0, 1, oo}) and Hodge analogue" ? W. Feit: "Some Galois groups over number fields" ? Y. Ihara: "Arithmetic aspect of Galois actions on 1I"1(P - {O, 1, oo})" - survey talk ? U. Jannsen: "Galois cohomology of i-adic representations" ? B. Matzat: - "Rationality criteria for Galois extensions" - "How to construct polynomials with Galois group Mll over Q" ? B. Mazur: "Deforming GL(2) Galois representations" ? K. Ribet: "Lowering the level of modular representations of Gal( Q/ Q)" ? J-P. Serre: - Introductory Lecture - "Degree 2 modular representations of Gal(Q/Q)" ? J.
Table of Contents:
Normalization of the Hyperadelic Gamma Function.- 1.Gaussian units.- 2.The structure of Mr,?.- 3.Normalization.- Maass Forms and Galois Representations.- 1.Automorphic forms via representations.- 2.Holomorphic automorphic forms for GSp(4).- 3.Geometric automorphic forms.- 4.Reductions.- 5.Heuristics and conjectures.- 6.Transfer of problem to GSp(4, A?).- 7.Hypothesis 1: structure of global L-packets for GSp(4).- 8.An analytic estimate for the conjugates of Maass forms.- 9.Hypothesis 2: Galois representations attached to Siegel modular forms of higher weight.- 10.The main theorem.- Le Groupe Fondamental De La Droite Projective Moins Trois Points.- 0.Terminologie et notations.- 1.Motifs mixtes.- 2.Exemples.- 3.Torseurs sous Z(n).- 4.Rappels sur les Ind-objets.- 5.Géométrie algébrique dans une catégorie tannakienne.- 6.Le groupe fondamental d'une catégorie tannakienne.- 7.Géométrie algébrique dans la catégorie tannakienne des systemes de réalisations: interprétations.- 8.Extensions itérées de motifs de Tate.- 9.Rappels sur les groupes unipotents.- 10.Théories du ?1.- Groupoides.- Théorie classique.- Théorie profinie.- Théorie algébrique.- 11.Le Frobenius cristallin du ?1 de Rham.- 12.La filtration de Hodge du ?1.- 13.Le ?1 motivique.- 14.Exemple: le ?1 motivique de Gm.- 15.Points bases a l'infini.- Théorie classique.- Théorie profinie.- Théorie algébrique.- Compatibilités.- Théorie motivique.- 16.P1 moins trois points: un quotient de ?1 motivique.- 17.Relations de distribution: voie géométrique.- 18.Le torseur Pd.k + ( ? 1 )k ? Pd.k est de torsion: voie géométrique.- 19.Comparaison des Z(h)-torseurs des paragraphes 3 et 16.- Index des notations.- The Galois Representation Arising from P1 ? {0, 1,?} and Tate Twists of Even Degree.- 1.Preliminaries and statement of the Theorem.- 2.Reducing the proof of the Theorem to two key lemmas.- 3.Proof of Key Lemma A.- 4.Proof of Key Lemma B.- 5.Remarks and discussion.- On the ?-Adic Cohomology of Varieties Over Number Fields and its Galois Cohomology.- 1.The basic conjecture.- 2.Connections with algebraic K-theory.- 3.Connections with Iwasawa theory.- 4.Global results.- 5.The local case.- 6.The case n ? i + 1 ? 2n.- 7.The case i = 1: abelian varieties.- Rationality Criteria for Galois Extensions.- 1.Fundamental groups.- 2.Class numbers of generators.- 3.Topological automorphisms.- 4.Braids.- 5.Braids and topological automorphisms together.- Deforming Galois Representations.- 1Universal deformation of representations.- 1.1Deformations.- 1.2Existence of universal deformation rings.- 1.3Functoriality.- 1.4One-dimensional representations.- 1.5The duality involution.- 1.6Obstructions.- 1.7Ordinary representations.- 1.8Schur-type results.- 1.9A few simple examples.- 1.10 Global Galois representations.- 1.11Remarks on Galois representations to SL2(Fp).- 1.12Neat residual representations.- 1.13Neat S3-extensions of ?.- 2.The internal structure of universal deformation spaces.- 2.1General glossary.- 2.2Special dihedral representations.- 2.3The origin.- 2.4The globally dihedral locus.- 2.5The ordinary locus.- 2.6The inertially reducible locus.- 2.7The inertially metabelian and the inertially dihedral locus.- 2.8Loci of constant p-adic Hodge type.- Galois Groups of Poincaré Type Over Algebraic Number Fields.- 1.The function field case.- 2.Classification of Demuskin groups.- 3.p-adic number fields.- 4.n-local fields.- 5.The absolute Galois group of a p-adic number field.- 6.Global number fields.
More
Galois Groups over ?: Proceedings of a Workshop Held March 23-27, 1987
35 481 HUF
32 643 HUF