• Contact

  • Newsletter

  • About us

  • Delivery options

  • Prospero Book Market Podcast

  • News

  • 0
    Ecological Physiology of Daily Torpor and Hibernation

    Ecological Physiology of Daily Torpor and Hibernation by Geiser, Fritz;

    Series: Fascinating Life Sciences;

      • GET 20% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice EUR 106.99
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        45 385 Ft (43 223 Ft + 5% VAT)
      • Discount 20% (cc. 9 077 Ft off)
      • Discounted price 36 307 Ft (34 578 Ft + 5% VAT)

    45 385 Ft

    db

    Availability

    Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
    Not in stock at Prospero.

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Product details:

    • Edition number 2021
    • Publisher Springer
    • Date of Publication 24 August 2021
    • Number of Volumes 1 pieces, Book

    • ISBN 9783030755249
    • Binding Hardback
    • No. of pages317 pages
    • Size 235x155 mm
    • Weight 731 g
    • Language English
    • Illustrations 61 Illustrations, black & white; 55 Illustrations, color
    • 232

    Categories

    Short description:

    This book provides an in-depth overview on the functional ecology of daily torpor and hibernation in endothermic mammals and birds. The reader is well introduced to the physiology and thermal energetics of endothermy and underlying different types of torpor. Furthermore, evolution of endothermy as well as reproduction and survival strategies of heterothermic animals in a changing environment are discussed.

    Endothermic mammals and birds can use internal heat production fueled by ingested food to maintain a high body temperature. As food in the wild is not always available, many birds and mammals periodically abandon energetically costly homeothermic thermoregulation and enter an energy-conserving state of torpor, which is the topic of this book. Daily torpor and hibernation (multiday torpor) in these heterothermic endotherms are the most effective means for energy conservation available to endotherms and are characterized by pronounced temporal and controlled reductions in body temperature, energy expenditure, water loss, and other physiological functions. Hibernators express multiday torpor predominately throughout winter, which substantially enhances winter survival. In contrast, daily heterotherms use daily torpor lasting for several hours usually during the rest phase, some throughout the year. Although torpor is still widely considered to be a specific adaptation of a few cold-climate species, it is used by many animals from all climate zones, including the tropics, and is highly diverse with about 25-50% of all mammals, but fewer birds, estimated to use it. While energy conservation during adverse conditions is an important function of torpor, it is also employed to permit or facilitate energy-demanding processes such as reproduction and growth, especially when food supply is limited. Even migrating birds enter torpor to conserve energy for the next stage of migration, whereas bats may use it to deal with heat. Even though many heterothermic species will bechallenged by anthropogenic influences such as habitat destruction, introduced species, novel pathogens and specifically global warming, not all are likely to be affected in the same way. In fact it appears that opportunistic heterotherms because of their highly flexible energy requirements, ability to limit foraging and reduce the risk of predation, and often pronounced longevity, may be better equipped to deal with anthropogenic challenges than homeotherms. In contrast strongly seasonal hibernators, especially those restricted to mountain tops, and those that have to deal with new diseases that are difficult to combat at low body temperatures, are likely to be adversely affected.  
    This book addresses researchers and advanced students in Zoology, Ecology and Veterinary Sciences.

    More

    Long description:

    This book provides an in-depth overview on the functional ecology of daily torpor and hibernation in endothermic mammals and birds. The reader is well introduced to the physiology and thermal energetics of endothermy and underlying different types of torpor. Furthermore, evolution of endothermy as well as reproduction and survival strategies of heterothermic animals in a changing environment are discussed.

    Endothermic mammals and birds can use internal heat production fueled by ingested food to maintain a high body temperature. As food in the wild is not always available, many birds and mammals periodically abandon energetically costly homeothermic thermoregulation and enter an energy-conserving state of torpor, which is the topic of this book. Daily torpor and hibernation (multiday torpor) in these heterothermic endotherms are the most effective means for energy conservation available to endotherms and are characterized by pronounced temporal and controlled reductions in bodytemperature, energy expenditure, water loss, and other physiological functions. Hibernators express multiday torpor predominately throughout winter, which substantially enhances winter survival. In contrast, daily heterotherms use daily torpor lasting for several hours usually during the rest phase, some throughout the year. Although torpor is still widely considered to be a specific adaptation of a few cold-climate species, it is used by many animals from all climate zones, including the tropics, and is highly diverse with about 25-50% of all mammals, but fewer birds, estimated to use it. While energy conservation during adverse conditions is an important function of torpor, it is also employed to permit or facilitate energy-demanding processes such as reproduction and growth, especially when food supply is limited. Even migrating birds enter torpor to conserve energy for the next stage of migration, whereas bats may use it to deal with heat. Even though many heterothermic species will be challenged by anthropogenic influences such as habitat destruction, introduced species, novel pathogens and specifically global warming, not all are likely to be affected in the same way. In fact it appears that opportunistic heterotherms because of their highly flexible energy requirements, ability to limit foraging and reduce the risk of predation, and often pronounced longevity, may be better equipped to deal with anthropogenic challenges than homeotherms. In contrast strongly seasonal hibernators, especially those restricted to mountain tops, and those that have to deal with new diseases that are difficult to combat at low body temperatures, are likely to be adversely affected.  

    This book addresses researchers and advanced students in Zoology, Ecology and Veterinary Sciences.


    More

    Table of Contents:

    Chapter 1. Introduction, Background and Definitions.- Chapter 2. Quantifying Torpor.- Chapter 3. Diversity and Geography of Torpor and Heterothermy.- Chapter 4. Patterns and Expression of Torpor.- Chapter 5. Physiology and Thermal Biology.- Chapter 6. Seasonality of Daily Torpor and Hibernation.- Chapter 7. Ecological and Behavioural Aspects of Torpor.- Chapter 8. Torpor during Reproduction and Development.- Chapter 9. Dietary Lipids, Thermoregulation and Torpor Expression.- Chapter 10. Evolution of Endothermy and Torpor.- Chapter 11. Concluding Remarks.


    More
    Recently viewed
    previous
    Ecological Physiology of Daily Torpor and Hibernation

    Ecological Physiology of Daily Torpor and Hibernation

    Geiser, Fritz;

    45 385 HUF

    Charcuterie Boards: Platters, boards, plates and simple recipes to share

    Charcuterie Boards: Platters, boards, plates and simple recipes to share

    Ballard, Miranda; Pickford, Louise;

    10 122 HUF

    The Grammar Daily: 365 Quick Tips for Successful Writing from Grammar Girl

    The Grammar Daily: 365 Quick Tips for Successful Writing from Grammar Girl

    Fogarty, Mignon

    7 381 HUF

    Günther Wizemann ? The Black Garden: The Black Garden

    Günther Wizemann ? The Black Garden: The Black Garden

    Wizemann, Günther; Von Albertini, Giorgia; Vetsch, Florian;

    22 774 HUF

    Nachhaltigkeit in der Lehre: Eine Herausforderung für Hochschulen

    Nachhaltigkeit in der Lehre: Eine Herausforderung für Hochschulen

    Leal Filho, Walter; (ed.)

    38 173 HUF

    next