
Classification and Data Science in the Digital Age
Series: Studies in Classification, Data Analysis, and Knowledge Organization;
- Publisher's listprice EUR 42.79
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 1 452 Ft off)
- Discounted price 16 699 Ft (15 904 Ft + 5% VAT)
18 151 Ft
Availability
Uncertain availability. Please turn to our customer service.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1st ed. 2023
- Publisher Springer
- Date of Publication 8 December 2023
- Number of Volumes 1 pieces, Book
- ISBN 9783031090332
- Binding Paperback
- No. of pages416 pages
- Size 235x155 mm
- Weight 658 g
- Language English
- Illustrations 25 Illustrations, black & white; 68 Illustrations, color 0
Categories
Short description:
The contributions gathered in this open access book focus on modern methods for data science and classification and present a series of real-world applications. Numerous research topics are covered, ranging from statistical inference and modeling to clustering and dimension reduction, from functional data analysis to time series analysis, and network analysis. The applications reflect new analyses in a variety of fields, including medicine, marketing, genetics, engineering, and education.
The book comprises selected and peer-reviewed papers presented at the 17th Conference of the International Federation of Classification Societies (IFCS 2022), held in Porto, Portugal, July 19?23, 2022. The IFCS federates the classification societies and the IFCS biennial conference brings together researchers and stakeholders in the areas of Data Science, Classification, and Machine Learning. It provides a forum for presenting high-quality theoretical and applied works, and promoting and fostering interdisciplinary research and international cooperation. The intended audience is researchers and practitioners who seek the latest developments and applications in the field of data science and classification.
Long description:
The contributions gathered in this open access book focus on modern methods for data science and classification and present a series of real-world applications. Numerous research topics are covered, ranging from statistical inference and modeling to clustering and dimension reduction, from functional data analysis to time series analysis, and network analysis. The applications reflect new analyses in a variety of fields, including medicine, marketing, genetics, engineering, and education.
The book comprises selected and peer-reviewed papers presented at the 17th Conference of the International Federation of Classification Societies (IFCS 2022), held in Porto, Portugal, July 19?23, 2022. The IFCS federates the classification societies and the IFCS biennial conference brings together researchers and stakeholders in the areas of Data Science, Classification, and Machine Learning. It provides a forum for presenting high-quality theoretical and applied works, and promoting and fostering interdisciplinary research and international cooperation. The intended audience is researchers and practitioners who seek the latest developments and applications in the field of data science and classification.
Table of Contents:
Preface.- R. Abdesselam: A Topological Clustering of Individuals.- C. Anton and I. Smith: Model Based Clustering of Functional Data with Mild Outliers.- F. Antonazzo and S. Ingrassia: A Trivariate Geometric Classification of Decision Boundaries for Mixtures of Regressions.- E. Arnone, E. Cunial, and L. M. Sangalli: Generalized Spatio-temporal Regression with PDE Penalization.- R. Ascari and S. Migliorati: A New Regression Model for the Analysis of Microbiome Data.- R. Aschenbruck, G. Szepannek, and A. F. X. Wilhelm: Stability of Mixed-type Cluster Partitions for Determination of the Number of Clusters.- A. Ashofteh and P. Campos: A Review on Official Survey Item Classification for Mixed-Mode Effects Adjustment.- V. Batagelj: Clustering and Blockmodeling Temporal Networks ? Two Indirect Approaches.- R. Boutalbi, L. Labiod, and M. Nadif: Latent Block Regression Model.- N. Chabane, M. Achraf Bouaoune, R. Amir Sofiane Tighilt, B. Mazoure, N. Tahiri, and V. Makarenkov: Using Clustering and Machine Learning Methods to Provide Intelligent Grocery Shopping Recommendations.- T. Chadjipadelis and S. Magopoulou: COVID-19 Pandemic: a Methodological Model for the Analysis of Government?s Preventing Measures and Health Data Records.- J. Champagne Gareau, É. Beaudry, and V. Makarenkov: pcTVI: Parallel MDP Solver Using a Decomposition into Independent Chains.- C. Di Nuzzo and S. Ingrassia: Three-way Spectral Clustering.- J. Dobša and H. A. L. Kiers: Improving Classification of Documents by Semi-supervised Clustering in a Semantic Space.- J. Gama: Trends in Data Stream Mining.- L. A. García-Escudero, A. Mayo-Iscar, G. Morelli, and M. Riani: Old and New Constraints in Model Based Clustering.- V. G Genova, G. Giordano, G . Ragozini, and M. Prosperina Vitale: Clustering Student Mobility Data in 3-way Networks.- R. Giubilei: Clustering Brain Connectomes Through a Density-peak Approach.- T. Górecki, M. Šuczak, and P. Piasecki: Similarity Forest for Time Series Classification.- K. Hayashi, E. Hoshino, M. Suzuki, E. Nakanishi, K. Sakai, and M. Obatake: Detection of the Biliary Atresia Using Deep Convolutional Neural Networks Based on Statistical Learning Weights via Optimal Similarity and Resampling Methods.- Ch. Hennig: Some Issues in Robust Clustering.- J. Kalina and P. Janá?ek: Robustness Aspects of Optimized Centroids.- L. Labiod and M. Nadif: Data Clustering and Representation Learning Based on Networked Data.- Lazhar Labiod and Mohamed Nadif: Towards a Bi-stochastic Matrix Approximation of k-means and Some Variants.- A. LaLonde, T. Love, D. R. Young, and T. Wu: Clustering Adolescent Female Physical Activity Levels with an Infinite Mixture Model on Random Effects.- Á. López-Oriona, J. A. Vilar, and P. D?Urso: Unsupervised Classification of Categorical Time Series Through Innovative Distances.- D. Masís, E. Segura, J. Trejos, and A. Xavier: Fuzzy Clustering by Hyperbolic Smoothing.- R. Meng, H. K. H. Lee, and K. Bouchard: Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Networks.- H. Duy Nguyen, F. Forbes, G. Fort, and O. Cappé: An Online Minorization-Maximization Algorithm.- L. Palazzo and R. Ievoli: Detecting Differences in Italian Regional Health Services During Two Covid-19 Waves.- G. Panagiotidou and T. Chadjipadelis: Political and Religion Attitudes in Greece: Behavioral Discourses.- K. Pawlasová, I. Karafiátová, and J. Dvořák: Supervised Classification via Neural Networks for Replicated Point Patterns.- G. Perrone and G. Soffritti: Parsimonious Mixtures of Seemingly Unrelated Contaminated Normal Regression Models.- N. Pronello, R. Ignaccolo, L. Ippoliti, and S. Fontanella: Penalized Model-based Functional Clustering: a Regularization Approach via Shrinkage Methods.- D. Rodrigues, L. P. Reis, and B. M. Faria: Emotion Classification Based on Single Electrode Brain Data: Applications for Assistive Technology.- R. Scimone, A. Menafoglio, L. M. Sangalli, and P. Secchi: The Death Process in Italy Before and During the Covid-19 Pandemic: a Functional Compositional Approach.- O. Silva, Á. Sousa, and H. Bacelar-Nicolau: Clustering Validation in the Context of Hierarchical Cluster Analysis: an Empirical Study.- C. Silvestre, M. G. M. S. Cardoso, and M. Figueiredo: An MML Embedded Approach for Estimating the Number of Clusters.- Á. Sousa, O. Silva, M. Graça Batista, S. Cabral, and H. Bacelar-Nicolau: Typology of Motivation Factors for Employees in the Banking Sector: An Empirical Study Using Multivariate Data Analysis Methods.- J. Michael Spoor, J. Weber, and J. Ovtcharova: A Proposal for Formalization and Definition of Anomalies in Dynamical Systems.- N. Tahiri and A. Koshkarov: New Metrics for Classifying Phylogenetic Trees Using -means and the Symmetric Difference Metric.- S. D. Tomarchio: On Parsimonious Modelling via Matrix-variate t Mixtures.- G. Zammarchi, M. Romano, and C. Conversano: Evolution of Media Coverage on Climate Change and Environmental Awareness: an Analysisof Tweets from UK and US Newspapers.
More

Working with Children Experiencing Speech and Language Disorders in a Bilingual Context: A Home Language Approach
Subcribe now and receive a favourable price.
Subscribe
18 214 HUF

Designing Data: The Art, Craft and Science of Effe ctive Visual Communication and Information Design: The Art, Craft and Science of Effective Visual Communication and Information Design
Subcribe now and receive a favourable price.
Subscribe
24 039 HUF

Classification and Data Science in the Digital Age
Subcribe now and receive a favourable price.
Subscribe
18 151 HUF

Introduction to Psycholinguistics ? Understanding Language Science, 2nd Edition: Understanding Language Science
Subcribe now and receive a favourable price.
Subscribe
23 255 HUF

Introduction to Comparative Public Administratio ? Administrative Systems and Reforms in Europe, Second Edition: Administrative Systems and Reforms in Europe, Second Edition
Subcribe now and receive a favourable price.
Subscribe
21 230 HUF

Statistical Planning and Inference ? Concepts and Applications: Concepts and Applications
Subcribe now and receive a favourable price.
Subscribe
35 401 HUF

A Short Introduction to Mathematical Concepts in Physics
Subcribe now and receive a favourable price.
Subscribe
27 324 HUF

The Materiality of Interaction ? Notes on the Materials of Interaction Design
Subcribe now and receive a favourable price.
Subscribe
14 170 HUF

Developing and Maintaining Practical Archives: A how-to-do-it manual for librarians
Subcribe now and receive a favourable price.
Subscribe
35 401 HUF

How I Learn: A Kid's Guide to Learning Disability
Subcribe now and receive a favourable price.
Subscribe
4 043 HUF