A Student's Guide to Numerical Methods
Series: Student's Guides;
- Publisher's listprice GBP 26.00
-
12 421 Ft (11 830 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 2 484 Ft off)
- Discounted price 9 937 Ft (9 464 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
12 421 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Cambridge University Press
- Date of Publication 30 April 2015
- ISBN 9781107479500
- Binding Paperback
- No. of pages216 pages
- Size 228x153x11 mm
- Weight 360 g
- Language English
- Illustrations 73 b/w illus. 300
Categories
Short description:
The plain language style, worked examples and exercises in this book help students to understand the foundations of computational physics and engineering.
MoreLong description:
This concise, plain-language guide for senior undergraduates and graduate students aims to develop intuition, practical skills and an understanding of the framework of numerical methods for the physical sciences and engineering. It provides accessible self-contained explanations of mathematical principles, avoiding intimidating formal proofs. Worked examples and targeted exercises enable the student to master the realities of using numerical techniques for common needs such as solution of ordinary and partial differential equations, fitting experimental data, and simulation using particle and Monte Carlo methods. Topics are carefully selected and structured to build understanding, and illustrate key principles such as: accuracy, stability, order of convergence, iterative refinement, and computational effort estimation. Enrichment sections and in-depth footnotes form a springboard to more advanced material and provide additional background. Whether used for self-study, or as the basis of an accelerated introductory class, this compact textbook provides a thorough grounding in computational physics and engineering.
MoreTable of Contents:
Preface; 1. Fitting functions to data; 2. Ordinary differential equations; 3. Two-point boundary conditions; 4. Partial differential equations; 5. Diffusion: parabolic PDEs; 6. Elliptic problems and iterative matrix solution; 7. Fluid dynamics and hyperbolic equations; 8. Boltzmann's equation and its solution; 9. Energy-resolved diffusive transport; 10. Atomistic and particle-in-cell simulation; 11. Monte Carlo techniques; 12. Monte Carlo radiation transport; 13. Next steps; Appendix A. Summary of matrix algebra; Index.
More