
A Friendly Guide to Data Science
Everything You Should Know About the Hottest Field in Tech
Series: Friendly Guides to Technology;
- Publisher's listprice EUR 48.14
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 1 634 Ft off)
- Discounted price 18 787 Ft (17 892 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
20 420 Ft
Availability
Not yet published.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number First Edition
- Publisher Apress
- Date of Publication 28 July 2025
- Number of Volumes 1 pieces, Book
- ISBN 9798868811685
- Binding Paperback
- No. of pages884 pages
- Size 235x155 mm
- Language English
- Illustrations 52 Illustrations, black & white; 107 Illustrations, color 700
Categories
Short description:
Curious about data science but not sure where to start? This book is a beginner-friendly guide to what data science is and how people use it. It walks you through the essential topics—what data analysis involves, which skills are useful, and how terms like “data analytics” and “machine learning” connect—without getting too technical too fast.
Data science isn’t just about crunching numbers, pulling data from a database, or running fancy algorithms. It’s about asking the right questions, understanding the process from start to finish, and knowing what’s possible (and what’s not). This book teaches you all of that, while also introducing important topics like ethics, privacy, and security—because working with data means thinking about people, too.
Whether you're a student exploring new skills, a professional navigating data-driven decisions, or someone considering a career change, this book is your friendly gateway into the world of data science, one of today’s most exciting fields. No coding or programming experience? No problem. You'll build a solid foundation and gain the confidence to engage with data science concepts— just as AI and data become increasingly central to everyday life.
What You Will Learn
- Know what foundational statistics is and how it matters in data analysis and data science
- Understand the data science project life cycle and how to manage a data science project
- Examine the ethics of working with data and its use in data analysis and data science
- Understand the foundations of data security and privacy
- Collect, store, prepare, visualize, and present data
- Identify the many types of machine learning and know how to gauge performance
- Prepare for and find a career in data science
Long description:
Unlock the world of data science—no coding required.
Curious about data science but not sure where to start? This book is a beginner-friendly guide to what data science is and how people use it. It walks you through the essential topics—what data analysis involves, which skills are useful, and how terms like “data analytics” and “machine learning” connect—without getting too technical too fast.
Data science isn’t just about crunching numbers, pulling data from a database, or running fancy algorithms. It’s about asking the right questions, understanding the process from start to finish, and knowing what’s possible (and what’s not). This book teaches you all of that, while also introducing important topics like ethics, privacy, and security—because working with data means thinking about people, too.
Whether you're a student exploring new skills, a professional navigating data-driven decisions, or someone considering a career change, this book is your friendly gateway into the world of data science, one of today’s most exciting fields. No coding or programming experience? No problem. You'll build a solid foundation and gain the confidence to engage with data science concepts— just as AI and data become increasingly central to everyday life.
What You Will Learn
- Grasp foundational statistics and how it matters in data analysis and data science
- Understand the data science project life cycle and how to manage a data science project
- Examine the ethics of working with data and its use in data analysis and data science
- Understand the foundations of data security and privacy
- Collect, store, prepare, visualize, and present data
- Identify the many types of machine learning and know how to gauge performance
- Prepare for and find a career in data science
Who This Book is for
A wide range of readers who are curious about data science and eager to build a strong foundation. Perfect for undergraduates in the early semesters of their data science degrees, as it assumes no prior programming or industry experience. Professionals will find particular value in the real-world insights shared through practitioner interviews. Business leaders can use it to better understand what data science can do for them and how their teams are applying it. And for career changers, this book offers a welcoming entry point into the field—helping them explore the landscape before committing to more intensive learning paths like degrees or boot camps.
MoreTable of Contents:
Part I: Foundations.- Chapter 1: Working with Numbers: What Is Data, Really?.- Chapter 2: Figuring Out What’s Going on in the Data: Descriptive Statistics.- Chapter 3: Setting Us Up for Success: The Inferential Statistics Framework and Experiments.- Chapter 4: Coming to Complex Conclusions: Inferential Statistics and Statistical Testing.- Chapter 5: Figuring Stuff Out: Data Analysis.- Chapter 6: Bringing It into the 21st Century: Data Science.- Chapter 7: A Fresh Perspective: The New Data Analytics.- Chapter 8: Keeping Everyone Safe: Data Security and Privacy.- Chapter 9: What’s Fair and Right: Ethical Considerations.- Part II: Doing Data Science.- Chapter 10: Grasping the Big Picture: Domain Knowledge.- Chapter 11: Tools of the Trade: Python and R.- Chapter 12: Trying Not to Make a Mess: Data Collection and Storage.- Chapter 13: For the Preppers: Data Gathering and Preprocessing.- Chapter 14: Ready for the Main Event: Feature Engineering, Selection, and Reduction.- Chapter 15: Not a Crystal Ball: Machine Learning.- Chapter 16: How’d We Do? Measuring the Performance of ML Techniques.- Chapter 17: Making the Computer Literate: Text and Speech Processing.- Chapter 18: A New Kind of Storytelling: Data Visualization and Presentation.- Chapter 19: This Ain’t Our First Rodeo: ML Applications.- Chapter 20: When Size Matters: Scalability and the Cloud.- Chapter 21: Putting It All Together: Data Science Solution Management.- Chapter 22: Errors in Judgment: Biases, Fallacies, and Paradoxes.- Part III: The Future.- Chapter 23: Getting Your Hands Dirty: How to Get Involved in Data Science.- Chapter 24: Learning and Growing: Expanding Your Skillset and Knowledge.- Chapter 25: Is It Your Future?: Pursuing a Career in Data Science.- Appendix A.
More